当前位置:贤学网>范文>工作总结> 六年级数学知识点总结

六年级数学知识点总结

时间:2024-08-30 08:38:39 工作总结 我要投稿

六年级数学知识点总结

  总结是指对某一阶段的工作、学习或思想中的经验或情况加以总结和概括的书面材料,它可以有效锻炼我们的语言组织能力,不妨坐下来好好写写总结吧。那么我们该怎么去写总结呢?下面是小编收集整理的六年级数学知识点总结,仅供参考,欢迎大家阅读。

六年级数学知识点总结

六年级数学知识点总结1

  四个公式:

  两个公式:

  ①增加量(减少量)=原来的量×增加的百分数(减少的百分数)

  ②现在的量=原来的量±增加量(减少量)

  求增加百分之几?减少百分之几?

  公式:

  增加百分之几=增加的部分÷单位1

  减少百分之几=减少的部分÷单位1

  例如:

  1、45立方厘米的水结成冰后,冰的体积为50立方厘米,冰的体积比原来水的体积增加百分之几?

  解题思路:根据公式增加百分之几=增加的部分÷单位1,先确定单位1是水,已经知道是45:增加的部分不知道,可以利用50减45求得5;最后用增加的部分5÷单位1水的45就等于增加百分之几。

  计算步骤:第一步:单位1:水:45立方厘米

  第二步:增加的部分:50—45=5立方厘米

  第三步:增加百分之几:5÷45=

  2、45立方厘米的水结成冰后,体积增加了5立方厘米,冰的体积比原来水的体积增加百分之几?

  解题思路:根据公式增加百分之几=增加的部分÷单位1,先确定单位1是水,已经知道是45:增加的.部分是5立方厘米;最后用增加的部分5÷单位1水的45就等于增加百分之几。

  计算步骤:第一步:单位1:水:45立方厘米

  第二步:增加的部分:5立方厘米

  第三步:增加百分之几:5÷45=

  3、水结成冰后,体积增加了5立方厘米,冰的体积为50立方厘米,冰的体积比原来水的体积增加百分之几?

  解题思路:根据公式增加百分之几=增加的部分÷单位1,先确定单位1是水,不知道但可以根据题目“水结成冰后,体积增加了5立方厘米”知道水是少的,冰是多的,所以可以用50—5求出水是45立方厘米。加的部分是5立方厘米;最后用增加的部分5÷单位1水的45就等于增加百分之几。

  计算步骤:第一步:单位1:水:50—5=45立方厘米

  第二步:增加的部分:5立方厘米

  第三步:增加百分之几:5÷45=

  4、“减少百分之几与增加百分之几”的解题方法完全相同。

  5、与增加百分之几相同的还有“多百分之几”“提高百分之几”“增长百分之几“等。

  与减少百分之几相同的还有“少百分之几”“降低百分之几”“节约百分几”等。

六年级数学知识点总结2

  条件分析—假设法:

  假设可能情况中的一种成立,然后按照这个假设去判断,如果有与题设条件矛盾的情况,说明该假设情况是不成立的,那么与他的相反情况是成立的'。例如,假设a是偶数成立,在判断过程中出现了矛盾,那么a一定是奇数。

  条件分析—列表法:

  当题设条件比较多,需要多次假设才能完成时,就需要进行列表来辅助分析。列表法就是把题设的条件全部表示在一个长方形表格中,表格的行、列分别表示不同的对象与情况,观察表格内的题设情况,运用逻辑规律进行判断。

  条件分析—图表法:

  当两个对象之间只有两种关系时,就可用连线表示两个对象之间的关系,有连线则表示“是,有”等肯定的状态,没有连线则表示否定的状态。例如A和B两人之间有认识或不认识两种状态,有连线表示认识,没有表示不认识。

  逻辑计算:

  在推理的过程中除了要进行条件分析的推理之外,还要进行相应的计算,根据计算的结果为推理提供一个新的判断筛选条件。

  简单归纳与推理:

  根据题目提供的特征和数据,分析其中存在的规律和方法,并从特殊情况推广到一般情况,并递推出相关的关系式,从而得到问题的解决。

六年级数学知识点总结3

  (一)分数乘法意义:

  1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。

  “分数乘整数”指的是第二个因数必须是整数,不能是分数。

  2、一个数乘分数的意义就是求一个数的几分之几是多少。

  “一个数乘分数”指的是第二个因数必须是分数,不能是整数。(第一个因数是什么都可以)

  (二)分数乘法计算法则:

  1、分数乘整数的计算方法:用分子乘整数的积作分子,分母不变。能约分的可以先约分,再计算。

  (1)为了计算简便能约分的可先约分再计算。(整数和分母约分)

  (2)约分是用整数和下面的分母约掉公因数。(整数千万不能与分母相乘,计算结果必须是最简分数)。

  2、分数乘分数的计算方法是:用分子相乘的积做分子,用分母相乘的积作分母。(分子乘分子,分母乘分母)

  (1)如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。

  (2)分数化简的方法是:分子、分母同时除以它们的公因数。

  (3)在乘的过程中约分,是把分子、分母中,两个可以约分的数先划去,再分别在它们的上、下方写出约分后的数。(约分后分子和分母必须不再含有公因数,这样计算后的。结果才是最简单分数)。

  (4)分数的基本性质:分子、分母同时乘或者除以一个相同的数(0除外),分数的大小不变。

  (三)积与因数的关系:

  一个数(0除外)乘大于1的.数,积大于这个数。a×b=c,当b>1时,c>a。

  一个数(0除外)乘小于1的数,积小于这个数。a×b=c,当b<1时,c

  一个数(0除外)乘等于1的数,积等于这个数。a×b=c,当b=1时,c=a。

  在进行因数与积的大小比较时,要注意因数为0时的特殊情况。

  (四)分数混合运算

  1、分数混合运算的运算顺序与整数混合运算的运算顺序相同,先算乘法,后算加减法,有括号的先算括号里面的,再算括号外面的。

  2、整数乘法运算定律对分数乘法同样适用;运算定律可以使一些计算简便。

  乘法交换律:a×b=b×a

  乘法结合律:(a×b)×c=a×(b×c)

  乘法分配律:a×(b±c)=a×b±a×c

  (五)分数乘法应用题——用分数乘法解决问题

  1、求一个数的几分之几是多少?(用乘法)

  已知单位“1”的量,求单位“1”的量的几分之几是多少,用单位“1”的量与分数相乘。

  2、巧找单位“1”的量:在含有分数(分率)的语句中,分率前面的量就是单位“1”对应的量,或者“占”“是”“比”字后面的量是单位“1”。

  3、求比一个数多(或少)几分之几的数是多少的解题方法

  (1)单位“1”的量+(—)单位“1”的量×这个数量比单位“1”的量多(或少)的几分之几=这个数量;

  (2)单位“1”的量×[1+这个数量比单位“1”的量多(或少)的几分之几]=这个数量。

六年级数学知识点总结4

  一:分数除加、除减的运算顺序

  除加、除减混合运算,如果没有括号,先算除法,后算加减。

  二:连除的计算方法

  分数连除,可以分步转化为乘法计算,也可以一次都转化为乘法再计算,能约分的要约分。

  三:不含括号的分数混合运算的运算顺序

  在一个分数混合运算的算式里,如果只含有同一级运算,按照从左到右的顺序计算;如果含有两级运算,先算第二级运算,再算第一级运算。

  四:含有括号的分数混和运算的运算顺序

  在一个分数混合运算的算式里,如果既有小括号又有中括号,要先算小括号里面的,再算中括号里面的。

  五:整数的.运算定律在分数混和运算中的运用

  分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数求另一个因数。被除数分子乘除数分母,被除数分母乘除数分子。

六年级数学知识点总结5

  六年级下册数学复习知识点总结归纳

  1、约分的方法:用分子和分母的公约数(1除外)去除分子、分母;通常要除到得出最简分数为止。

  2、通分的方法:先求出原来的几个分数分母的最小公倍数,然后把各分数化成用这个最小公倍数作分母的分数。

  3、小数的意义:把整数1平均分成10份、100份、1000份……得到的十分之几、百分之几、千分之几……可以用小数表示。一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……

  4、一个小数由整数部分、小数部分和小数点部分组成。数中的圆点叫做小数点,小数点左边的数叫做整数部分,小数点左边的数叫做整数部分,小数点右边的数叫做小数部分。在小数里,每相邻两个计数单位之间的进率都是10。小数部分的最高分数单位“十分之一”和整数部分的最低单位“一”之间的进率也是10。

  5、纯小数:整数部分是零的小数,叫做纯小数。例如:0.25 、 0.368都是纯小数。带小数:整数部分不是零的小数,叫做带小数。例如:3.25 、5.26都是带小数。

  6、有限小数:小数部分的数位是有限的小数,叫做有限小数。例如:41.7 、 25.3 、 0.23都是有限小数。

  7、无限小数:小数部分的数位是无限的小数,叫做无限小数。例如:4.33 …… 3.1415926 ……

  8、无限不循环小数:一个数的小数部分,数字排列无规律且位数无限,这样的小数叫做无限不循环小数。例如:π。

  9、循环小数:一个数的小数部分,有一个数字或者几个数字依次不断重复出现,这个数叫做循环小数。

  10、0既不是正数,也不是负数,它是正数和负数的分界。0大于负数,小于正数。负数比较大小时,不考虑负号,数字大的数反而小。

  11、“+”可以省略不写,“—”不能省略。

  12、数轴的要素:正方向(箭头表示)、原点(0刻度)、单位长度(刻度)。数轴上0左边的数都是负数,0右边的数都是正数。从左到右逐渐变大,最大负整数—1最小正整数1。

  13、表示两个比相等的式子叫做比例。如:2:1=6:3。

  14、在比例里,两个外项的积等于两个两个内向的积。这叫做比例的基本性质。例如:由3:2=6:4可知3×4=2×6。

  15、解比例:根据比例的基本性质,如果已知比例中的任何三项,就可以求出这个数比例中的另外一个未知项。求比例中的未知项,叫做解比例。例如:3:x = 4:,内项乘内项,外项乘外项,则:4x =3×8,解得x=6。

  16、成正比例的量:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的.比值(也就是商)一定,这两种量就叫做成正比例的量,他们的关系叫做正比例关系。用字母表示y/x=k(一定)例如:速度一定,路程和时间成正比例;因为:路程÷时间=速度(一定)。

  17、成反比例的量:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,他们的关系叫做反比例关系。用字母表示x×y=k(一定)例如:路程一定,速度和时间成反比例,因为:速度×时间=路程(一定)。

  18、比例尺=图上距离:实际距离;实际距离=图上距离÷比例尺;图上距离=实际距离×比例尺。

  六年级下册数学学习方法

  1、抓住课堂,数学学习重在平日工夫,不适于突击复习。所以平日学习最重要的是课堂45分钟,听讲要聚精会神,思维紧跟老师。同时要阐明一点,许多同学容易忽略老师所讲的数学思想、数学方法,而重视题目的解答,其实诸如“化归”、“数形结合”等思想方法远远重要于某道题目的解答。

  2、高质量完成作业,所谓高质量是指高精确率和高速度。写作业时,有时同一类型的题重复练习,这时就要有意识的考查速度和精确率,并且在每做完一次时能够对此类题目有更深层的思考,诸如它考查的内容,运用的数学思想方法,解题的规律、技巧等。另外对于老师布置的思考题,也要认真完成。

  3、勤思考,多提问。首先对于老师给出的规律、定理,做到刨根问底,这便是理解的道路。其次,学习任何学科都应抱着猜忌的态度,尤其是数学。对于老师的讲解,课本的内容,有疑问应尽管提出,与老师讨论。总之,思考、提问是肃清学习隐患的道路。

  4、每学完一章都应将本章内容做一个框架图或在脑中过一遍,整顿出它们的关系。对于相似易混淆的知识点应分项归纳比较,有时可用联想法将其区分开。

六年级数学知识点总结6

  方程以及列方程解应用题1、形如ax±b=c方程的解法

  【解方程时,可以利用等式的基本性质来解,注意两边要同时加上或减去同一个数】2、形如ax±bx=c方程的解法

  【解方程时,第一步要把x前面的序数相加或相减,再

  在两边同时除以同一个数】

  3、列方程解决实际问题

  基本步骤:审清题意→找准等量关系→设未知数→列方程→解方程→检验→作答基本类型:比较大小关系;总数和部分数关系;和倍与差倍关系;行程问题中的关系;

  涉及图形的周长、面积的关系等等。

  长方体和正方体1、长方体和正方体的特征形体面顶点棱12相对的棱条长度相等关系长方体6个至少4个面相对面8个是长方形完全相同正方体6个正方形6个面8个完全相同正方体是特殊1212条长度的长方体条都相等2、表面积概念及计算

  【长方体或正方体6个面的总面积,叫做它们的表面积】算法:长方体(长×宽+长×高+宽×高)×2(ab+ah+bh)×2

  正方体棱长×棱长×6a×a×6=6

  a2

  注:不足6个面的实际问题根据具体情况计算,例如鱼缸、无盖纸盒等等。3、体积概念及计算体积(容积)定义物体所占空间的大小叫做它们的体积;容器所能容纳其它物体的体积叫做它的容积。分数乘法1、

  分数乘法算式的意义:比如3×

  形体长方体正方体体积(容积)体积单位计算方法V=abhV=a3进率V=Sh33m1=1000dm立方米立方分米33dmcm1=1000立方厘米1L=1000mL=1dm333表示3个相加的和是多少,也可以表示3的553是多少?

  注:【求一个数的几分之几用乘法解答】2、分数与整数相乘:用整数与分数的分子相乘的积作为分子,分数的'分母作为分母,

  日期:________________姓名:_________________重要资料请勿外传

  最后约分成最简分数。或者先将整数与分数的分母进行约分,再应用前面计算法则。

  注:【任何整数都可以看作为分母是1的分数】3、分数与分数相乘:用分子相乘的积作为分子,用分母相乘的积作为分母,最后约

  分成最简分数。

  4、分数连乘:通过几个分数的分子与分母直接约分再进行计算。倒数的认识1、乘积是1的两个数互为倒数。2、求一个数(不为0)的倒数,只要将这个数的分子与分母交换位置。【整数是

  分母为1的分数】

  3、1的倒数是1,0没有倒数。4、假分数的倒数都小于或等于1(或者说不大于1);

  真分数的倒数都大于1。

  分数除法1、分数除法计算法则:甲数除以乙数(不为0)等于甲数乘乙数的倒数。2、分数连除或乘除混合计算:可以从左向右依次计算,但一般是遇到除以一个数,

  把它改写成乘这个数的倒数来计算。

  【转化成分数的连乘来计算】

  3、除数大于1,商小于被除数;除数小于1,商大于被除数;除数等于1,商等于被

  除数。

  4、分数除法的意义:已知一个数的几分之几是多少,求这个数?可以用列方程的方

  法来解,也可以直接用除法。

  注:在单位换算中,要弄清需要换算的单位之间的进率是多少。

  认识比1、比的意义:比表示两个数相除的关系。

  2、

  比与分数、除法的关系:a:b=a÷b=

  a(b≠0)b区别后项比值除数商关系运算比相互关系前项比号(:)分数分子分数线(-)分母分数值数除法被除数除号(÷)3、比值:比的前项除以比的后项,所得的商就叫比值。

  注:比值是一个数,可以是整数、分数、小数,不带单位名称。

  4、比的基本性质:比的前项和后项同时乘或除以一个相同的数(0除外),比值

  不变。

  5、最简整数比:比的前项和后项是互质数。也就是比的前项和后项除了1意外

  没有其它公因数。

  6、化简:运用比的基本性质对比进行化简,方法:先把比的前、后项变成整数,

  再除以它们的最大公因数。

  注:化简比和求比值是不同的两个概念

  【意义不同,方法不同,结果不同】

六年级数学知识点总结7

  第六单元 百分数

  1、百分数的定义:表示一个数是另一个数的百分之几的数,叫做百分数。百分数也叫做百分率或百分比。

  百分数表示两个数之间的比率关系,不表示具体的数量,无单位名称。

  例如:25%的意义:表示一个数是另一个数的25%。

  2、百分数通常不写成分数形式,而在原来分子后面加上“%”来表示。分子部分可为小数、整数,可以大于100,小于100或等于100。

  3、小数与百分数互化的规则:

  把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号;(加向右)

  把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。(去向左)

  4、百分数与分数互化的规则:

  把分数化成百分数,通常先把分数化成小数(除不尽的保留三位小数),再把小数化成百分数;

  把百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数。

  5、常用的分数、小数及百分数的互化

  21=0.5=50% 41=0.25=25%

  43=0.75=75% 51=0.2=20%

  52=0.4=40% 53=0.6=60%

  54=0.8=80% 81=0.125=12.5%

  83=0.375=37.5% 85=0.625=62.5%

  87=0.875=87.5% 101=0.1=10%

  161=0.0625=6.25% 201=0.05=5%

  251=0.04=4% 401=0.025=2.5%

  501=0.02=2% 1001=0.01=1%

  6、百分率公式:求百分率就是求一个数是另一个数的百分之几。(算式要加×100%,包括浓度、利润率)

  7、求一个数比另一个数多(或少)百分之几(另一个数是单位“1”)

  实际生活中,人们常用增加了百分之几、减少了百分之几、节约了百分之几等来表示增加、或减少的幅度。

  求甲比乙多百分之几 (甲-乙)÷乙

  求乙比甲少百分之几 (甲-乙)÷甲

  8、求一个数的百分之几是多少

  一个数(单位“1”) ×百分率

  9、已知一个数的百分之几是多少,求这个数 ?

  部分量÷百分率=一个数(单位“1”)

  10、浓度问题

  溶质(盐)的重量+溶剂(水)的重量=溶液(盐水)的重量

  溶质(盐)的重量÷溶液(盐水)的重量×100%=浓度

  溶液(盐水)的重量×浓度=溶质(盐)的重量

  溶质(盐)的重量÷浓度=溶液(盐水)的重量

  最常用的是用方程解浓度问题

  比如两种不同浓度的溶液混合,最常用的数量关系是

  甲溶液质量×甲的浓度+乙溶液质量×乙的浓度

  =总溶液质量×总的浓度

  11、折扣:商品的'现价是原价的百分之几。几折就是十分之几也就是百分之几十。

  “八折”的含义是:现价是原价的80%;“八五折”的含义是:现价是原价的85%

  公式:现价 = 原价 × 折数(通常写成百分数形式)利润 = 售价 - 成本

  利润率 = 成本利润×100%

  成数:表示一个数是另一个数十分之几的数,叫做成数。例如,今年的粮食产量比去年增产“二成”。“二成”即是十分之二,也就是今年的粮食产量比去年增加了20%。

  12、纳税:纳税是根据国家各种税法的有关规定,按照一定的比率把集体或个人收入的一部分缴纳给国家。国家用收来的税款发展经济、科技、教育、文化和国防安全。纳税的种类:将纳税主要分为增值税、消费税、营业税、个人所得税等几类。

  13、应纳税额:缴纳的税款叫应纳税额。

  14、税率:应纳税额与各种收入的比率叫做税率。

  15、应纳税额的计算:应纳税额=各种收入×税率

  例如:一家饭店十月份的营业额约是30万元,如果安营业额的5%缴纳营业税,这家饭店十月份应缴纳营业税多少万元?

  16、储蓄的意义:人们常常把暂时不用的钱存入银行或信用社,储蓄起来,这样不仅可以支援国家建设,也使得个人用钱更加安全和有计划,还可以增加一些收入。

  17、存款的类型:存款分为活期、整存整取、零存整取等方式。

  18、本金:存入银行的钱叫做本金。

  19、利息:取款时银行多支付的钱叫做利息。本息:本金与利息的总和叫做本息。

  20、国家规定,存款的利息要按5%(根据题目要求数据计算)的税率纳税。国债的利息不纳税。

  21、利率:利息与本金的比值叫做利率。

  22、银行存款税后利息的计算公式:利息=本金×利率×时间×(1-5%)

  23、银行存款利息的税金=利息×5% 或 =本金×利率×时间×5%

  第七单元 统计

  扇形统计图的特点:可以清楚直观地反映各部份数量同总量之间的关系。

  折线统计图的特点:不但能够看出数量的多少,还可以反映出数量增减变化的情况。

  条形统计图的特点:能够清楚的看出数量的多少。

  补充一:图形计算公式

  1、正方形:周长=边长×4 面积=边长×边长

  2、长方形:周长=(长+宽)×2 长=周长÷2-宽

  面积=长×宽 长=面积÷宽

  3、三角形:面积=底×高÷2

  三角形高=面积 ×2÷底

  三角形底=面积 ×2÷高

  4、平行四边形:面积=底×高 底=面积÷高

  5、梯形:面积=(上底+下底)×高÷2

  高=面积 ×2÷(上底+下底)

  上底=面积 ×2÷高-下底

  6、圆形

  (1)周长=直径×圆周率(π)=2×圆周率π×半径

  (2)面积=半径×半径×圆周率(π)

  7、正方体 表面积=棱长×棱长×6

  体积=棱长×棱长×棱长

  8、长方体 表面积=(长×宽+长×高+宽×高)×2

  体积=长×宽×高

  补充二:其他应用题基本数量关系式

  平均数问题:总数÷总份数=平均数

  盈亏问题

  (盈+亏)÷两次分配量之差=参加分配的份数

  (大盈-小盈)÷两次分配量之差=参加分配的份数

  (大亏-小亏)÷两次分配量之差=参加分配的份数

  相遇问题

  相遇路程=速度和×相遇时间

  相遇时间=相遇路程÷速度和

  速度和=相遇路程÷相遇时间

  追及问题

  追及距离=速度差×追及时间

  追及时间=追及距离÷速度差

  速度差=追及距离÷追及时间

  年龄问题:年龄差永远不变

六年级数学知识点总结8

  位置与方向

  1、什么是数对?

  数对:由两个数组成,中间用逗号隔开,用括号括起来。括号里面的数由左至右为列数和行数,即“先列后行”。

  数对的作用:确定一个点的位置。经度和纬度就是这个原理。

  2、确定物体位置的方法:

  (1)、先找观测点;

  (2)、再定方向(看方向夹角的度数);

  (3)、最后确定距离(看比例尺)。

  描绘路线图的关键是选好观测点,建立方向标,确定方向和路程。

  位置关系的相对性:两地的位置具有相对性在叙述两地的位置关系时,观测点不同,叙述的方向正好相反,而度数和距离正好相等。

  相对位置:东--西;南--北;南偏东--北偏西。

  小学数学小数乘小数知识点

  知识点一:

  因数与积的小数位数的关系:因数中共有几位小数,积中就有几位小数。

  知识点二:

  小数乘法的一般计算方法:

  先按整数乘法算出积,再给积点上小数点(看因数中一共有几位小数,就从积的.右边起输出几位,点上小数点。)乘得的积的小数位数不够要在积的前面用0补足,在点小数点。

  知识点三:

  小数乘法的验算方法

  1、把因数的位置交换相乘

  2、用计算器来验算

  小学数学0的相关知识点

  数学0的含义

  1、没有任何东西

  2、数轴的前点(原点)

  3、可以表示分界

  4、可以表示起点

  5、可以起到占位作用

  0是奇数还是偶数

  0是一个特殊的偶数(20xx年国际数学协会规定零为偶数;我国20xx年也规偶数定零为偶数)。它既是正偶数与负偶数的分界线,又是正奇数与负奇数的分水岭。

  小学规定0为最小的偶数,但是在初中学习了负数,出现了负偶数时,0就不是最小的偶数了。

  哥德巴赫猜想说明任何大于二的偶数都可以写为两个质数之和,但尚未有人能证明这个猜想。

  0的相关知识点

  0既不是正数也不是负数,而是正数和负数的分界点。0没有倒数,0的相反数是0,0的绝对值是0,0的平方根是0,0的立方根是0,0乘任何数都等于0,除0之外任何数的0次方等于1。0不能作为分母出现,0的所有倍数都是0。0不能作为除数。

六年级数学知识点总结9

  一、课内重视听讲,课后及时复习

  课堂上特别要抓住基础知识和基本技能的学习,课后要及时复习不留疑点。

  首先要在做各种习题之前将老师所讲的知识点回忆一遍,正确掌握各类公式的推理过程,尽量回忆而不采用不清楚立即翻书之举。认真独立完成作业,勤于思考,对于有些题目由于自己的思路不清,一时难以解出,应让自己冷静下来认真分析题目,尽量自己解决。在每个阶段的学习中要进行整理和归纳总结,把知识的点、线、面结合起来交织成知识网络,纳入自己的知识体系。

  二、适当多做题,养成良好的解题习惯

  1、要想学好数学,多做题目是必须的,熟悉掌握各种题型的解题思路。

  2、刚开始要从基础题入手,以课本上的习题为准,反复练习打好基础,再找一些课外的.习题,以帮助开拓思路,提高自己的分析、解决能力,掌握一般的解题规律。

  3、对于一些易错题,可备有错题集,写出自己的解题思路和正确的解题过程两者一起比较找出自己的错误所在,以便及时更正。

  4、在平时要养成良好的解题习惯。让自己的精力高度集中,使大脑兴奋,思维敏捷,能够进入最佳状态,在考试中能运用自如。实践证明:越到关键时候,你所表现的解题习惯与平时练习无异。

  有些同学平时做作业都会做,可一到考试就犯不是算错数,就是看错题等等低级错误。这是因为平时解题时随便、粗心、大意等,所以小朋友平时要养成良好的解题习惯是非常重要的!

  三、调整心态,正确对待考试

  1、首先,应把主要精力放在基础知识、基本技能、基本方法这三个方面上,因为每次考试占绝大部分的也是基础性的题目,而对于那些难题及综合性较强的题目作为调剂,认真思考,尽量让自己理出头绪,做完题后要总结归纳。

  2、调整好自己的心态,使自己在任何时候镇静,思路有条不紊,克服浮躁的情绪。特别是对自己要有信心,永远鼓励自己,除了自己,谁也不能把我打倒,要有自己不垮,谁也不能打垮我的自豪感。

  3、考试前要做好准备,练练常规题,把自己的思路展开,在保证正确率的前提下提高解题速度。对于一些容易的基础题要有十二分把握拿全分;对于一些难题,也要尽量拿分,考试中要使自己的水平正常甚至超常发挥。

  由此可见,要把数学学好就得找到适合自己的学习方法,了解数学学科的特点,使自己进入数学的广阔天地中去。

六年级数学知识点总结10

  (一)数与计算

  (1)分数的乘法和除法。分数乘法的意义。分数乘法。乘法的运算定律推广到分数。倒数。分数除法的意义。分数除法。

  (2)分数四则混合运算。分数四则混合运算。

  (3)百分数。百分数的意义和写法。百分数和分数、小数的互化。

  (二)比和比例比的意义和性质。比例的意义和基本性质。解比例。成正比例的量和成反比例的量。

  (三)几何初步知识圆的认识。圆周率。画圆。圆的周长和面积。*扇形的认识。轴对称图形的初步认识。圆柱的认识。圆柱的表面积和体积。圆锥的认识。圆锥的体积。球和球的半径、直径的初步认识。

  (四)统计初步知识统计表。条形统计图,折线统计图,*扇形统计图。

  (五)应用题分数四则应用题(包括工程问题)。百分数的实际应用(包括发芽率、合格率、利率、税率等的计算)。比例尺。按比例分配。

  (六)实践活动联系学生所接触到的社会情况组织活动。例如就家中的卧室,画一个平面图。

  (七)整理和复习六年级数学学习方法:进入小学高年级后,科目稍微增加、内容拓宽、知识深化……学生认知结构发生根本变化,许多同学容易忽略老师所讲的数学思想、数学方法,而注重题目的解答,其实诸如“化归”、“数形结合”等思想方法远远重要于某道题目的解答。总结比较,理清思绪知识点的总结比较。每学完一章都应将本章内容做一个框架图或在脑中过一遍,整理出它们的关系。对于相似易混淆的知识点应分项归纳比较,有时可用联想法将其区分开。题目的总结比较。同学们可以建立自己的题库。在学习《位置》在用数对确定点的.位置,这部分渗透了数形结合的思想,和一一对应的思想。学生可在方格纸上画画。

  学习分数乘法的意义:

  1、分数乘整数是求几个相同加数的和的简便运算,与整数乘法的意义相同。

  2、分数乘分数是求一个数的几分之几是多少。

  例:一小时刷一面墙的1/4,1/5小时刷一面墙的多少?实际上是求1/5的1/4是多少?这种题型可以利用数形结合的数学思想,画一画,折一折。再就是利用:工作效率*工作时间=工作总量在学习分数除法这一节时,例如:分数、除法和小数之间的关系和区别,以及分数除法应用题无论是折纸实验,还是画线段图,都是用图形语言揭示分数除法计算过程的几何意义。分数乘除法,比的知识,运用了类比的数学。(相似和变式)在学习圆这一节时,用逐渐逼近的转化思想。把一个园等分(偶数份)成的份数越多,拼成的图像越接近长方形。体现化圆为方,化曲为直的思想,应用转化思想。在应用中,我们还知道面积相同时,长方形的周长最长,正方形居中,圆周长最短。周长一定时,圆面积最大,正方形居中,长方形面积最小。这题蕴含着一个数学规律,即在面积相等的情况下,圆的周长最短,而长方形的周长最长;反之,在周长相等的情况下,圆的面积最大,而长方形的面积则最小。在学习数学广角这一章节中,例如,研究古代鸡兔同笼的问题,就应用了假设法来教学。这种思维方式就是划归法。

六年级数学知识点总结11

  第一单元 分数乘法

  (一)分数乘法的意义

  1、分数乘整数:分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数和得简便运算。

  例如:125×6,表示:6个125相加是多少,还表示125的6倍是多少。

  2、一个数(小数、分数、整数)乘分数:一个数乘分数的意义与整数乘法的意义不相同,是表示这个数的几分之几是多少。

  例如:6×125,表示:6的125是多少。

  72×125,表示:72的125是多少。

  (二)分数乘法的计算法则

  1、整数和分数相乘:整数和分子相乘的积作分子,分母不变。

  2、分数和分数相乘:分子相乘的积作分子,分母相乘的积作分母。

  3、注意:能约分的先约分,然后再乘,得数必须是最简分数。当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。

  (三)分数大小的比较:

  1、一个数(0除外)乘以一个真分数,所得的积小于它本身。一个数(0除外)乘以一个假分数,所得的积等于或大于它本身。一个数(0除外)乘以一个带分数,所得的积大于它本身。

  2、如果几个不为0的数与不同分数相乘的积相等,那么与大分数相乘的因数反而小,与小分数相乘的因数反而大。

  (四)解决实际问题。

  1、分数应用题一般解题步行骤。

  (1)找出含有分率的关键句。(2)找出单位“1”的量

  (3)根据线段图写出等量关系式:单位“1”的量×对应分率=对应量。(4)根据已知条件和问题列式解答。2、乘法应用题有关注意概念。(1)乘法应用题的解题思路:已知一个数,求这个数的几分之几是多少?(2)找单位“1”的方法:从含有分数的关键句中找,注意“的”前“比”后的规则。当句子中的单位“1”不明显时,把原来的量看做单位“1”。

  (3)甲比乙多几分之几表示甲比乙多的数占乙的几分之几,甲比乙少几分之几表示甲比乙少数占乙的几分之几。(4)在应用题中如:小湖村去年水稻的亩产量是750千克,今年水稻的亩产量是800千克,增产几分之几?题目中的“增产”是多的意思,那么谁比谁多,应该是“多比少多”,“多”的是指800千克,“少”的是指750千克,即800千克比750千克多几分之几,结合应用题的表达方式,可以补充为“今年水稻的亩产量比去年水稻的亩产量多几分之几?”(5)“增加”、“提高”、“增产”等蕴含“多”的意思,“减少”、“下降”、“裁员” 等蕴含“少”的意思,“相当于”、“占”、“是”、“等于”意思相近。(6)当关键句中的单位“1”不明显时,要把关键句补充完整,补充成“谁是谁的几分之几”或“甲比乙多几分之几”、 “甲比乙少几分之几”的形式。(7)乘法应用题中,单位“1”是已知的。(8)单位“1”不同的两个分率不能相加减,加减属相差比,始终遵循“凡是比较,单位一致”的规则。

  (9)找到单位“1”后,分析问题,已知单位“1”用乘法,未知单位“1”用除法(注意:求单位“1”是最后一步用除法,其余计算应在前)。 单位“1”×分率=比较量 ; 比较量÷分率=单位“1”

  (10)单位“1”不同的两个分率不能相加减,解应用题时应把题中的不变量做为单位“1”,统一分率的单位“1”,然后再相加减。

  (11)单位“1”的特点: ①单位“1”为分母; ②单位“1”为不变量。

  (12)分率与量要对应。①多的对应量对多的分率;

  ②少的对应量对少的分率;

  ③增加的对应量对增加的分率;

  ④减少的对应量对减少的分率;

  ⑤提高的对应量对提高的分率;

  ⑥降低的对应量对降低的分率;

  ⑦工作总量的对应量对工作总量的分率;

  ⑧工作效率的对应量对工作效率的分率;

  ⑨部分的对应量对部分的分率;

  ⑩总量的对应量对总量的分率;

  例如:

  1、求一个数的几分之几是多少?(求一个数的几分之几用乘法计算)

  方法:单位“1”的数量×对应分率=对应数量。

  2、分数的连乘。找到每一个分率的单位“1”。

  (五)倒数

  1、倒数:乘积是1的两个数互为倒数。

  2、求倒数的方法:把这个数写成分数形式,然后将分子和分母交换位置。

  3、0没有倒数,1的倒数是它本身。

  4、真分数的倒数都大于它本身,假分数的倒数等于或小于它本身。

  注意:倒数必须是成对的两个数,单独的一个数不能称做倒数。

  第二单元 位置与方向

  一、确定物体位置的方法:

  1、先找观测点;

  2、再定方向(看方向夹角的度数);

  3、最后确定距离(看比例尺)

  二、描绘路线图的关键是选好观测点,建立方向标,确定方向和路程。

  三、位置关系的相对性:

  两地的位置具有相对性在叙述两地的位置关系时,观测点不同,叙述的方向正好相反,而度数和距离正好相等。

  四、相对位置:东--西;南--北;南偏东--北偏西。

  第三单元 分数除法

  (一)分数除法的意义:

  分数除法的意义:分数除法的意义与整数除法的`意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算。

  例如: 表示:已知两个数的积是 ,与其中一个因数 ,求另一个因数是多少。

  ÷4表示已知两个数的积是 ,与其中一个因数4,求另一个因数是多少。还表示把平均分成4份,每份是多少。

  (二)分数除法的计算:

  分数除法的计算法则:甲数除以乙数(0除外),等于甲数乘乙数的倒数。

  (三)比和比的应用:

  1.比的意义:两个数相除又叫做两个数的比。比的后项不能为0。

  2. 比值的意义:比的前项除以后项所得的商,叫做比值。

  3.比值的表示方式:通常用分数、小数和整数表示。

  4.比同除法的关系:比的前项相当于被除数,后项相当于除数,比值相当于商.

  5.比同分数的关系:比的前项相当于分子,比的后项相当于分母,比值相当于分数的值。

  6.比的基本性质:比的前项和后项同时乘上或者同时除以相同的数(0除外),比值不变。

  7. 化简比的方法:根据比的基本性质,把两个数的比化成最简单的整数比,叫做化简比,比的前项和后项必须是互质的整数。

  例如:(1) 16﹕20=(16÷4)﹕(20÷4)=4﹕5

  (2)65﹕43=( 65×12)﹕( 43×12)=10﹕9

  (3)1.8﹕0.09 =(1.8×100)﹕(0.09×100)

  =180﹕9=20﹕1

  8.在工农业生产中和日常生活中,常常需要把一个数量按照一定的比来进行分配。这种方法通常叫做按比例分配。

  9.按比例分配的解题方法:

  (1)先求出总的份数,再求出各部分数量占总数的几分之几。

  (2)用总数乘各部分的分率求出各部分的数量。

  10.分数除法中,被除数与商的大小关系:

  一个数(0除外)除以一个真分数,所得的商大于它本身。

  一个数(0除外)除以一个假分数,所得的商小于或等于它本身。

  一个数(0除外)除以一个带分数,所得的商小于它本身。

  (四)解分数应用题注意事项:

  1.找单位“1”的方法:从含有分率的句子中找,“的”前或“比”后的规则。当句子中的单位“1”不明显时,把原来的量看做单位“1”。

  2.找到单位“1”后,分析问题,已知单位“1”用乘法,未知单位“1”用除法(注意:求单位“1”是最后一步用除法,其余计算应在前)。

  数量关系: 单位“1”×对应分率=对应数量;

  对应量÷对应分率=单位“1”的量

  3.单位“1”不同的两个分率不能相加减,解应用题时应把题中的不变量做为单位“1”,统一分率的单位“1”,然后再相加减。

  4.单位“1”的特点: ①单位“1”为分母; ②单位“1”为不变量。

  5.“已知一个数的几分之几是多少,求这个数”的解题方法:

  (1)设单位“1”的量为x,列方程解答。

  (2)对应数量÷对应分率=单位“1”的总数量。

  6.工程问题:把工作总量看作单位“1”,

  工作效率 = 工作时间1

  工作时间 = 1÷工作效率

  合作时间 = 工作总量÷工作效率之和

  第四单元 比

  1、两个数相除又叫做两个数的比。在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值。比的后项不能为0。

  例如 15 :10 = 15÷10=3/2(比值通常用分数表示,也可以用小数或整数表示)

  2、比可以表示两个相同量的关系,即倍数关系。也可以表示两个不同量的比,得到一个新量。例:路程÷速度=时间。

  3、区分比和比值

  比:表示两个数的关系,可以写成比的形式,也可以用分数表示。

  比值:相当于商,是一个数,可以是整数,分数,也可以是小数。

  4、比和除法、分数的联系与区别:(区别)除法是一种运算,分数是一个数,比表示两个数的关系。 比的前项相当与除法中的被除数,分数中的分子;比的后项相当与除法中的除数,分数中的分母;比号相当于除法中的除号,分数中的分数线;比值相当于除法的商,分数的分数值。

  注意:体育比赛中出现两队的分是2:0等,这只是一种记分的形式,不表示两个数相除的关系。

  5、比的基本性质

  (1)根据比、除法、分数的关系:

  商不变的性质:被除数和除数同时乘或除以相同的数(0除外),商不变。

  分数的基本性质:分数的分子和分母同时乘或除以相同的数时(0除外),分数值不变。

  比的基本性质:比的前项和后项同时乘或除以相同的数(0除外),比值不变。

  (2)比的前项和后项都是整数,并且是互质数,这样的比就是最简整数比。根据比的基本性质,把比化成最简整数比。

  (3)化简比:

  用求比值的方法。

  注意:最后结果要写成比的形式。

  如: 15∶10 = 15÷10 = 3/2 = 3∶2 5 。按比例分配:把一个数量按照一定的比来进行分配。

  这种方法通常叫做按比例分配。

  第五单元 圆

  1、圆心:圆中心一点叫做圆心。用字母“O”来表示。

  半径:连接圆心和圆上任意一点的线段叫做半径,用字母“r”来表示。

  直径:通过圆心并且两端都在圆上的线段叫做直径,用字母“d”表示。

  2、圆心确定圆的位置,半径确定圆的大小。

  3、在同一个圆内,所有的半径都相等,所有的直径都相等。在同一个圆内,有无数条半径,有无数条直径。在同一个圆内,直径的长度是半径的2倍,半径的长度是直径的一半。用字母表示为:d=2r r =21d

  4、圆的周长:围成圆的曲线的长度叫做圆的周长。

  5、圆的周长总是直径的3倍多一些,这个比值是一个固定的数。我们把圆的周长和直径的比值叫做圆周率,用字母表示。圆周率是一个无限不循环小数。在计算时,取3.14。世界上第一个把圆周率算出来的人是我国的数学家祖冲之。

  6、圆的周长公式:C=d 或C=2r

  7、圆的面积:圆所占平面的大小叫圆的面积。

  8、把一个圆割成一个近似的长方形,割拼成的长方形的长相当于圆周长的一半,宽相当于圆的半径,因为长方形面积=长×宽,所以圆的面积= r×r=r?

  9、圆的面积公式:S=r? 或者S=(d2)?

  或者S=(C 2)?

  10、在一个正方形里画一个最大的圆,圆的直径等于正方形的边长。圆的面积和正方形面积的比是:4。

  在一个圆里画一个最大正方形的,圆的直径的长度等于正方形的对角线的长度,正方形的面积=对角线×对角线÷2=直径×直径÷2 。

  11、在一个长方形里画一个最大的圆,圆的直径等于长方形的短边。

  12、一个环形,外圆的半径是R,内圆的半径是r,它的面积是S=R?-r? 或 S=(R?-r?)。

  (其中R=r+环的宽度.)

  13、环形的周长=外圆周长+内圆周长

  14、半圆的周长等于圆的周长的一半加直径。

  半圆周长公式:C=d2+d 或C=r+2r

  15、半圆面积=圆面积2  公式为:S=r?2

  16、在同一个圆里,半径扩大或缩小多少倍,直径和周长也扩大或缩小相同的倍数。而面积扩大或缩小以上倍数的平方倍。

  例如:在同一个圆里,半径扩大4倍,那么直径和周长就都扩大4倍,而面积扩大16倍。

  17、两个圆的半径比等于直径比等于周长比,而面积比等于以上比的平方。

  例如:两个圆的半径比是2:3,那么这两个圆的直径比和周长比都是2:3,而面积比是4:9。

  18、当一个圆的半径增加a厘米时,它的周长就增加2a厘米;

  当一个圆的直径增加a厘米时,它的周长就增加a厘米。

  19、在同一圆中,圆心角占圆周角的几分之几,它所在扇形面积就占圆面积的几分之几;所对的弧就占圆周长的几分之几.

  20、当长方形,正方形,圆的周长相等时,圆的面积最大,长方形的面积最小;

  当长方形,正方形,圆的面积相等时,长方形的周长最大,圆的周长最小。

  21、扇形弧长公式:L=

  扇形的面积公式: S=r? (n为扇形的圆心角度数,r为扇形所在圆的半径)

  22、轴对称图形:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是轴对称图形。折痕所在的这条直线叫做对称轴。

  23、有1一条对称轴的图形有:角、等腰三角形、等腰梯形、扇形、半圆。

  有2条对称轴的图形是:长方形

  有3条对称轴的图形是:等边三角形

  有4条对称轴的图形是:正方形

  有无数条对称轴的图形是:圆、圆环。

  24、直径所在的直线是圆的对称轴。

  25、倍表

六年级数学知识点总结12

  1、比和比例的意义

  比的意义是两个数的除又叫做两个数的比,而比例的意义是表示两个比相等的式子是叫做比例。比是表示两个数相除,有两项;比例是一个等式,表示两个比相等,有四项。因此,比和比例的意义也有所不同。而且,比号没有括号的含义而另一种形式,分数有括号的含义!

  2、比的基本性质:比的前项和后项都乘以或除以一个不为零的数。比值不变。用于化简比。

  3、比例的性质:在比例里,两个外项的乘积等于两个内项的乘积。比例的性质用于解比例。

  4、比和比例的联系:

  比和比例有着密切联系。比是研究两个量之间的关系,所以它有两项;比例是研究相关联的两种量中两组相对应数的关系,所以比例是由四项组成。比例是由比组成的,成比例的.两个比的比值一定相等。

  5、比和比例的区别

  (1)意义、项数、各部分名称不同。比表示两个数相除;只有两个项:比的前项和后项。如:a:b这是比比例是一个等式,表示两个比相等;有四个项:两个外项和两个内项。a:b=3:4这是比例。

  (2)比的基本性质和比例的基本性质意义不同、应用不同。联系:比例是由两个相等的比组成。

  6、正比例:若A扩大或缩小几倍,B也扩大或缩小几倍(AB的商不变时),则A与B成正比。反比例:若A扩大或缩小几倍,B也缩小或扩大几倍(AB的积不变时),则A与B成反比。比例尺:图上距离与实际距离的比叫做比例尺。

六年级数学知识点总结13

  1、数与代数:

  比较系统地掌握有关整数、小数、分数和百分数、负数、比和比例、方程的基础知识;

  能比较熟练地进行整数、小数、分数的四那么运算;

  能进行整数、小数加、减、乘、除的估算;

  会使用学过的简便算法,合理、灵活地进行计算;

  会解学过的方程;

  养成检查和验算的适应。

  巩固常用计量单位的表象,掌握所学单位间的进率,能够进行简单的改写。

  2、空间与图形:

  掌握所学几何形体的特征;

  能够比较熟练地计算一些几何形体的周长、面积和体积,并能应用;

  巩固所学的简单的画图、测量等技能;

  巩固轴对称图形的认识,会画一个图形的对称轴,巩固图形的平移、旋转的认识;

  能用数对或依照方向和距离确定物体的位置,掌握有关比例尺的'知识,并能应用。

  3、统计与可能性:

  掌握所学的统计初步知识;

  能够看和绘制简单的统计图表;

  能够依照数据做出简单的推断与预测;

  会求一些简单事件的可能性;

  能够解决一些计算平均数的实际问题。

  数学奇偶数性质

  1、两个连续整数中必有一个奇数和一个偶数。

  2、奇数+奇数=偶数;偶数+奇数=奇数;偶数+偶数+...+偶数=偶数。

  3、奇数—奇数=偶数;偶数—奇数=奇数;奇数—偶数=奇数。

  4、若a、b为整数,则a+b与a—b有相同的奇偶性,即a+b与a—b同为奇数或同为偶数。

  5、n个奇数的乘积是奇数,n个偶数的乘积是偶数;算式中有一个是偶数,则乘积是偶数。

  6、奇数的个位是1、3、5、7、9;偶数的个位是0、2、4、6、8。

  7、奇数的平方除以2、4、8余1。

  8、任意两个奇数的平方差是2、4、8的倍数。

  数学平行四边形和梯形知识点

  1、直线外一点到直线所画的垂直线段最短;这点到这条直线的垂足之间的长度叫距离。

  2、两条平行线之间的距离处处相等。

  3、两组对边分别平行的四边形叫做平行四边形;平行四边形有无数条高,平行四边形不是轴对称图形。

  4、一个平行四边形在拉动过程中,面积变化,高变化,周长不变。平行四边形具有易变性。

  5、只有一组对边平行的四边形叫梯形。

  当梯形的两条腰相等时,这两腰相等的梯形叫做等腰梯形。等腰梯形是轴对称图形。

  四个角都是直角的四边形叫长方形。

  四个角都是直角,并且四条边都相等的四边形叫正方形。

  5、画高:

  从平行四边形一条边上的一点到对边引一条垂线,这点和垂足之间的线段叫做平行四边形的高。垂足所在的边叫做平行四边形的底。

  当梯形的两条腰相等时,这两腰相等的梯形叫做等腰梯形。

  特别注意:画高时,请注意;虚线、垂直标记、和名称

六年级数学知识点总结14

  1、一单元分数乘法分数乘整数的意义:就是求几个相同加数和的简便运算。

  2、计算法则:分数乘整数,用分数的分子和整数的积做分子,分母不变。

  3、一个数乘分数的意义:可以看做是求这个数的几分之几。

  4、计算法则:一个数乘分数,用分子×的积做分子,分母相乘的做分母,为了计算的简便可以先约分。

  5、整数乘法的交换律,结合律,分配率,对分数同样适用。

  6、乘积是一的两个数互为倒数。

  7、 2单元位置与方向用坐标确定位置:前面的数表示列,后面的表示行上北下南左西右东3单元分数除法分数除法的意义:分数与整数的意义相同。

  8、单位1:1.甲是乙的几分之几?甲÷乙2.甲比乙多几分之几? (甲-乙)÷乙3.甲比乙少几分之几? (乙-甲)÷乙路程=速度×时间速度=路程÷时间时间=路程÷速度工作总量=效率×时间工作效率=总量÷时间工作时间=总量÷效率4单元比比的意义:两数相除就叫做两个数的比比的前项相当于被除数,后项相当于除数,比值相当于商。

  9、前项相当于分子,后项相当于分母,比值相当于分数的值。

  10、 5单元圆圆是一种平面曲线图形。

  11、圆中心的点叫圆心,连接圆心和圆上的任意一点叫半径,通过圆心并且两端都在圆上的线段叫直径直径=半径×2圆的周长公式:面积公式:C=πd或C=2πr S=πr的平方6单元百分数便是一个数是另一个数的百分之几的.数叫百分数。

  12、百分数也叫百分率和百分比。

  13、百分数表示的是数量,不能带单位;百分数是分母是100的分数,分母是100的不一定是百分数。

  14、把分数化成百分数,通常先把分数化成小数(除不尽时,保留三位小数),再把小数化成百分数;把百分数化成分数,先把百分数改成分母是100的,能约分的要约成最简分数。

  15、 7单元扇形统计图统计图有:扇形统计图,条形统计图和折线统计图。

  16、扇形统计图的特点:能够更清楚地了解个部分和总数的关系。

  17、折线统计图的特点:不但可以表示出数量的多少,而且还能更清楚地表示数量的变化趋势。

  18、条形统计图的特点:能够清楚的看出数量的多少。

  19、 8单元数学广角用列方程或假设法。

六年级数学知识点总结15

  一、负数:

  1、在熟悉的生活情境中初步认识负数,能正确的读、写正数和负数,知道0既不是正数也不是负数。

  2、初步学会用负数表示一些日常生活中的实际问题,体验数学与生活的密切联系。

  3、能借助数轴初步学会比较正数、0和负数之间的大小。

  二、圆柱和圆锥

  1、认识圆柱和圆锥,掌握它们的基本特征。认识圆柱的底面、侧面和高。认识圆锥的底面和高。

  2、探索并掌握圆柱的侧面积、表面积的计算方法,以及圆柱、圆锥体积的计算公式,会运用公式计算体积,解决有关的简单实际问题。

  3、通过观察、设计和制作圆柱、圆锥模型等活动,了解平面图形与立体图形之间的联系,发展学生的空间观念。

  三、比例

  1、理解比例的意义和基本性质,会解比例。

  2、理解正比例和反比例的意义,能找出生活中成正比例和成反比例量的.实例,能运用比例知识解决简单的实际问题。

  3、认识正比例关系的图像,能根据给出的有正比例关系的数据在有坐标系的方格纸上画出图像,会根据其中一个量在图像中找出或估计出另一个量的值。

  4、了解比例尺,会求平面图的比例尺以及根据比例尺求图上距离或实际距离。

  5、认识放大与缩小现象,能利用方格纸等形式按一定的比例将简单图形放大或缩小,体会图形的相似。

  6、渗透函数思想,使学生受到辩证唯物主义观点的启蒙教育

  四、统计

  1、会综合应用学过的统计知识,能从统计图中准确提取统计信息,能够正确解释统计结果。

  2、能根据统计图提供的信息,做出正确的判断或简单预测。

【六年级数学知识点总结】相关文章:

数学中考知识点总结08-05

总结数学选修知识点08-24

初中数学知识点总结10-24

小学数学知识点总结02-07

初中数学知识点总结04-13

中考数学知识点总结05-24

初三数学的知识点总结03-06

中考数学知识点总结12-22

高考数学知识点总结11-06

Copyright©2003-2024gushici.weiyujianbao.cn版权所有