当前位置:贤学网>范文>工作总结> 数学必修一知识点总结

数学必修一知识点总结

时间:2024-11-21 14:30:00 工作总结 我要投稿

数学必修一知识点总结

  总结就是把一个时间段取得的成绩、存在的问题及得到的经验和教训进行一次全面系统的总结的书面材料,通过它可以正确认识以往学习和工作中的优缺点,因此我们需要回头归纳,写一份总结了。那么我们该怎么去写总结呢?以下是小编精心整理的数学必修一知识点总结,欢迎阅读,希望大家能够喜欢。

数学必修一知识点总结

数学必修一知识点总结1

  1、集合的含义与表示

  集合的三大特性:确定性、互异性、无序性。集合的表示有列举法、描述法。

  描述法格式为:{元素|元素的特征},例如{x|x5,且xN}2、常用数集及其表示方法

  (1)自然数集N(又称非负整数集):0、1、2、3、

  (2)正整数集N

  或N+:1、2、3、

  (3)整数集Z:

  (4)有理数集Q:包含分数、整数、有限小数等

  (5)实数集R:全体实数的集合

  (6)空集Ф:不含任何元素的集合

  3、元素与集合的关系:属于∈,不属于

  4、集合与集合的关系:子集、真子集、相等

  5、重要结论

  (1)传递性:若AB,BC,则AC

  (2)Ф是任何集合的子集,是任意非空集合的真子集。

  6、含有n个元素的集合,它的子集个数共有2n个;真子集有2n1个;非空子集有2n1个(即不计空集);非空的真子集有2n2个。

  7、集合的运算:交集、并集、补集.

  (1)A∩B={x|x∈A,且x∈B}.

  (2)A∪B={x|x∈A,或x∈B}.

  (3)CUAx|xU,且xA注:讨论集合的情况时,不要发遗忘了A的情况。

  8、函数概念

  9、分段函数:在定义域的不同部分,有不同的对应法则的函数。如y2x1x0x23x010、求函数的定义域的原则:(解决任何函数问题,必须要考虑其定义域)

  ①分式的分母不为零;如:y1x1,则x10

  ②偶次方根的被开方数大于或等于零;如:y5x,则5x0

  ③对数的底数大于0且不等于1;如:yloga(x2),则a0且a1

  ④对数的真数大于0;如:yloga(x2),则x20

  ⑤指数为0的底不能为零;如:y(m1)x,则m1011、函数的奇偶性(在整个定义域内考虑)

  (1)奇函数满足f(x)f(x),奇函数的图象关于原点对称;

  (2)偶函数满足f(x)f(x),偶函数的图象关于y轴对称;

  注:

  ①具有奇偶性的函数,其定义域关于原点对称;

  ②若奇函数在原点有定义,则f(0)0

  ③根据奇偶性可将函数分为四类:奇函数、偶函数、既是奇函数又是偶函数、非奇非偶函数。

  12、函数的单调性(在定义域的某个区间内考虑)

  当x1x2时,都有f(x1)f(x2),则f(x)在该区间上是增函数,图象从左到右上升;当x1x2时,都有f(x1)f(x2),则f(x)在该区间上是减函数,图象从左到右下降。

  函数f(x)在某区间上是增函数或减函数,那么说f(x)在该区间具有单调性,该区间叫做单调(增/减)区间

  13、一元二次方程ax2bxc0(a0)

  (1)求根公式:xbb24ac21,22a

  (2)判别式:b4ac

  (3)0时方程有两个不等实根;0时方程有一个实根;0时方程无实根。

  (4)根与系数的关系韦达定理:xxbc12a,x1x2a

  14、二次函数:一般式yax2bxc(a0);两根式ya(xx1)(xx2)(a0)

  (1)顶点坐标为(b4acb2by2a,4a);

  (2)对称轴方程为:x=2a;x0

  (3)当a0时,图象是开口向上的抛物线,在x=b4acb22a处取得最小值4a

  当a0时,图象是开口向下的抛物线,在x=b4acb22a处取得最大值4a

  (4)二次函数图象与x轴的交点个数和判别式的关系:

  0时,有两个交点;0时,有一个交点(即顶点);0时,无交点。

  15、函数的零点

  使f(x)0的实数x20叫做函数的零点。例如x01是函数f(x)x1的一个零点。注:函数yfx有零点函数yfx的图象与x轴有交点方程fx0有实根

  16、函数零点的判定:

  如果函数yfx在区间a,b上的图象是连续不断的一条曲线,并且有f(a)f(b)0。那么,函数yfx在区间a,b内有零点,即存在ca,b,使得fc0。

  17、分数指数幂(a0,m,nN,且n1)m3

  (1)annam。如x3x2;

  (2)amn1132mn。如1;

  (3)(na)na;anamx3x

  (4)当n为奇数时,nana;当n为偶数时,nan|a|a,a0a,a0.1

  18、有理指数幂的运算性质(a0,r,sQ)

  (1)arasars;

  (2)(ar)sars;

  (3)(ab)rarbr

  19、指数函数yax(a0且a1),其中x是自变量,a叫做底数,定义域是Ra10a1yy图象1x10x

  (1)定义域:R0性

  (2)值域:(0,+∞)质

  (3)过定点(0,1),即x=0时,y=1

  (4)在R上是增函数(4)在R上是减函数20、若abN,则叫做以为底N的对数。记作:logaNb(a0,a1,N0)其中,a叫做对数的底数,N叫做对数的真数。

  注:指数式与对数式的互化公式:logaNbabN(a0,a1,N0)

  21、对数的性质

  (1)零和负数没有对数,即logaN中N0;

  (2)1的对数等于0,即loga10;底数的对数等于1,即logaa122、常用对数lgN:以10为底的对数叫做常用对数,记为:log10NlgN

  自然对数lnN:以e(e=2。71828)为底的对数叫做自然对数,记为:logeNlnN23、对数恒等式:alogaNN

  24、对数的运算性质(a>0,a≠1,M>0,N>0)

  (1)loga(MN)logMaMlogaN;

  (2)logaNlogaMlogaN;

  (3)lognaMnlogaM(nR)(注意公式的逆用)

  25、对数的换底公式logmNaNloglog(a0,且a1,m0,且m1,N0)。

  ma推论

  ①或log1nnablog;

  ②logamblogab。

  bam

  26、对数函数ylogax(a0,且a1):其中,x是自变量,a叫做底数,定义域是(0,)

  a10a1y图像x01x01定义域:(0,∞)性质值域:R过定点(1,0)增函数减函数取值范围0

  ③如果两个不重合的平面有一个公共点,那么它们有且仅有一条过该点的公共直线。

  ④平行于同一直线的两条直线平行(平行的'传递性)。

  33、等角定理:

  空间中如果两个角的两边对应平行,那么这两个角相等或互补(如图)12334、两条直线的位置关系:平行:(在同一平面内,没有公共点)共面直线(在同一平面内,有一个公共点)异面直线

  相交:(不同在任何一个平面内的两条直线,没有公共点)直线与平面的位置关系:

  (1)直线在平面上;

  (2)直线在平面外(包括直线与平面平行,直线与平面相交)

  两个平面的位置关系:

  (1)两个平面平行;

  (2)两个平面相交35、直线与平面平行:

  定义一条直线与一个平面没有公共点,则这条直线与这个平面平行。判定平面外一条直线与此平面内的一直线平行,则该直线与此平面平行。

  性质一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行。

  36、平面与平面平行:

  定义两个平面没有公共点,则这两平面平行。

  判定若一个平面内有两条相交直线与另一个平面平行,则这两个平面平行。

  性质

  ①如果两个平面平行,则其中一个面内的任一直线与另一个平面平行。

  ②如果两个平行平面同时与第三个平面相交,那么它们交线平行。

  37、直线与平面垂直:

  定义如果一条直线与一个平面内的任一直线都垂直,则这条直线与这个平面垂直。

  判定一条直线与一个平面内的两相交直线垂直,则这条直线与这个平面垂直。

  性质

  ①垂直于同一平面的两条直线平行。

  ②两平行直线中的一条与一个平面垂直,则另一条也与这个平面垂直。

  38、平面与平面垂直:

  定义两个平行相交,如果它们所成的二面角是直二面角,则这两个平面垂直。判定一个平面过另一个平面的垂线,则这两个平面垂直。

  性质两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直。

  39、三角形的五“心”

  (1)O为ABC的外心(各边垂直平分线的交点)。外心到三个顶点的距离相等

  (2)O为ABC的重心(各边中线的交点)。重心将中线分成2:1的两段

  (3)O为ABC的垂心(各边高的交点)。

  (4)O为ABC的内心(各内角平分线的交点)。内心到三边的距离相等

  40、直线的斜率:

  (1)过Ax1,y1,Bx2,y2y12两点的直线,斜率kyx,(x1x2)2x1

  (2)已知倾斜角为的直线,斜率ktan(900)

  41、直线位置关系:已知两直线l1:yk1xb1,l2:yk2xb2,则l1//l2k1k2且b1b2 l1l2k1k21

  特殊情况:

  (1)当k1,k2都不存在时,l1//l2;

  (2)当k1不存在而k20时,l1l24

  2、直线的五种方程:

  ①点斜式yy1k(xx1)(直线l过点(x1,y1),斜率为k).

  ②斜截式ykxb(直线l在y轴上的截距为b,斜率为k)。

  ③两点式yy1xx1yx(直线过两点(x1,y1)与(x2,y2))。2y12x1

  ④截距式xayb1(a,b分别是直线在x轴和y轴上的截距,均不为0)

  ⑤一般式AxByC0(其中A、B不同时为0);可化为斜截式:yABxCB4

  3、(1)平面上两点A(x,y221,y1),B(x22)间的距离公式:|AB|=(x1x2)(y1y2)

  (2)空间两点A(x(x2221,y1,z1),B2,y2,z2)距离公式|AB|=(x1x2)(y1y2)(z1z2)

  (3)点到直线的距离d|Ax0By0C|A2B2(点P(x0,y0),直线l:AxByC0)。

  44、两条平行直线AxByC10与AxByC20间的距离公式:dC1C2A2B2

  注:求直线AxByC0的平行线,可设平行线为AxBym0,求出m即得。

  45、求两相交直线A1xB1yC10与A2xB2yC20的交点:解方程组AxB1yC10A12xB2yC20

  46、圆的方程:

  ①圆的标准方程(xa)2(yb)2r2。其中圆心为(a,b),半径为r

  ②圆的一般方程x2y2DxEyF0。

  其中圆心为(D2,ED2E24F222),半径为r2,其中DE4F>0

  47、直线AxByC0与圆的(xa)2(yb)2r2位置关系

  (1)dr相离0;

  (2)dr相切0;其中d是圆心到直线的距离,且dAaBbC(3)dr相交0。

  A2B23

  48、直线与圆相交于A(x1,y1),B(x2,y2)两点,求弦AB长度的公式:

  (1)|AB|2r2d2

  (2)|AB|1k2(x21x2)4x1x2(结合韦达定理使用),其中k是直线的斜率

  49、两个圆的位置关系:设两圆的圆心分别为O1,O2,半径分别为r1,r2,O1O2d

  1)dr1r2外离4条公切线;

  2)dr1r2外切3条公切线;

  3)r1r2dr1r2相交2条公切线;

  4)dr1r2内切1条公切线;

  5)0dr1r2内含无公切线

  必修③公式表

  50、三种抽样方法的区别与联系类别共同点各自特点相互联系适用范围简单随机抽样从总体中逐个抽取总体中个体数较少分层抽取过程将总体分成几层各层抽样可采用总体有差异明显的几部抽样中每个个体进行抽取简单随机抽样或分组成被抽取的概系统抽样率相等将总体平均分成系统抽样几部分,按事先确在起始部分抽样定的规则分别在各时采用简单随机总体中的个体较多部分抽取抽样

  51、

  (1)频率分布直方图(注意其纵坐标是“频率/组距)

  组数极差,频率频数,小矩形面积组距频率频率。组距样本容量组距

  (2)数字特征

  众数:一组数据中,出现次数最多的数。

  中位数:一组数从小到大排列,最中间的那个数(若最中间有两个数,则取其平均数)。平均数:x1nx1x2xn方差:s2=1n[(x22221x)(x2x)(x3x)(xnx)]

  标准差:s1nxx2x2212xxnx

  注:通过标准差或方差可以判断一组数据的分散程度;其值越小,数据越集中;其值越大,数据越分散。ninxyxiy回归直线方程:ybxa,其中bi1n,aybx,

  x2inx2i1

  注:回归直线一定过样本点中心(x,y)

  52、事件的分类:

  基本事件:一个事件如果不能再被分解为两个或两个以上事件,称作基本事件。

  (1)必然事件:必然事件是每次试验都一定出现的事件。P(必然事件)=1

  (2)不可能事件:任何一次试验都不可能出现的事件称为不可能事件。P(不可能事件)=0

  (3)随机事件:随机试验的每一种结果或随机现象的每一种表现称作随机事件,简称为事件

  53、在n次重复实验中,事件A发生的次数为m,则事件A发生的频率为m/n,当n很大时,m总是在某个常数值附近摆动,就把这个常数叫做事件A的概率。(概率范围:0PA1)

  54、互斥事件概念:在一次随机事件中,不可能同时发生的两个事件,叫做互斥事件(如图1)。如果事件A、B是互斥事件,则P(A+B)=P(A)+P(B)

  55、对立事件(如图2):指两个事件不可能同时发生,但必有一个发生。AB图1对立事件性质:P(A)+P(A)=1,其中A表示事件A的对立事件。

  56、古典概型是最简单的随机试验模型,古典概型有两个特征:AB

  (1)基本事件个数是有限的;

  (2)各基本事件的出现是等可能的,即它们发生的概率相同.

  57、设一试验有n个等可能的基本事件,而事件A恰包含其中的m个基本事件,则事件A的概率P(A)公式为PAA包含的基本事件的个数基本事件的总数=mn

  运用互斥事件的概率加法公式时,首先要判断它们是否互斥,再由随机事件的概率公式分别求它们的概率,然后计算。在计算某些事件的概率较复杂时,可转而先示对立事件的概率。58、几何概型的概率公式:PA构成事件A的区域长度(面积或体积)试验的全部结果构成的区域长度(面积或体积)

  必修④公式表

  r59、终边相同角构成的集合:|2k,kZ

  l)l

  60、弧度计算公式:r

  61、扇形面积公式:S12lr12r2(为弧度)62、三角函数的定义:已知Px,y是的终边上除原点外的任一点P(x,y)r则siny,cosx,tany,其中r2x2)yrrxy2x63、三角函数值的符号++++

  ++sincostan

  4

  64、特殊角的三角函数值:0235643234632sin012332122212220—1cos132112220—2—232—2—10tan03313不存—1—3在—330不存在65、同角三角函数的关系:sin2cos21,tansincos

  66、和角与差角公式:二倍角公式:

  sin()sincoscossin;sin22sincos

  cos()coscossinsin;cos2cos2sin212sin2

  tan()tantan2cos211tantan。tan22tan1tan267、诱导公式记忆口诀:奇变偶不变,符号看象限;其中,奇偶是指2的个数

  sin2ksinsinsinsinsinsinsincos2kcoscoscoscoscoscoscos

  tan2ktantantantantantantansin(2)coscos(2)sinsin(2)coscos(2)sin

  68、辅助角公式:asinbcos=a2b2sin()(辅助角所在象限与点(a,b)的象限相同,且

  tanba)。主要在求周期、单调性、最值时运用。如y3sinxcosx2sin(x6)

  69、半角公式(降幂公式):sin21cos1cos22,cos22270、三角函数yAsin(x)的性质(A0,0)

  (1)最小正周期T2;振幅为A;频率f1T;相位:x;初相:;值域:[A,A];

  对称轴:由x2k解得x;对称中心:由xk解得x组成的点(x,0)

  (2)图象平移:x左加右减、y上加下减。

  例如:向左平移1个单位,解析式变为yAsin[(x1)]向下平移3个单位,解析式变为yAsin(x)3

  (3)函数ytan(x)的最小正周期T。71、正弦定理:在一个三角形中,各边与对应角正弦的比相等。

  asinAbsinBcsinC2R(R是三角形外接圆半径)cosAb2c2a2a2b2c22bccosA,2bc,ca2cacosB,推论cosc2a272、余弦定理:bBb2222,c2a2b22abcosC。2caosCa2b2c2c2ab。73、三角形的面积公式:S11ABC2absinC2acsinB12bcsinA。74、三角函数的图象与性质和性质三角函数ysinxycosxytanxyyy11图象xx—0x3—122—20—122—0222定义域(,)(,)(k2,k2)值域[—1,1][—1,1](,)最大值x22k,ymax1x2k,ymax1最小值x22k,ymin1x2k,ymin1周期22奇偶性奇函数偶函数奇函数在[22k,22k]在[2k,2k]在(2k,22k)单调性上是增函数上是增函数上都是增函数kZ在[22k,322k]在[2k,2k]上是减函数上是减函数76、向量的三角形法则:79、向量的平行平行四边形法则:

  a+bbabab—aba+ba—177、平面向量的坐标运算:设向量a=(x1,y1),向量b=(x2,y2)

  (1)加法a+b=(x1x2,y1y2)。(2)减法a—b=(x1x2,y1y2)。(3)数乘a=(x1,y1)(x1,y1)

  (4)数量积ab=|a||b|cosθ=x1x2y1y2,其中是这两个向量的夹角

  (5)已知两点A(x1,y1),B(x2,y2),则向量ABOBOA(x2x1,y2y1)。

  78、向量a=(x,y)的模:|a|=(a)22222aaxy,即|a|a

  79、两向量的夹角公式cosabx1x2y1y2abx2y22y2

  11x2280、向量的平行与垂直(b0)

  a||bb=λax1y2x2y10。记法:a=(x1,y1),b=(x2,y2)

  abab=0x1x2y1y20。记法:a=(x1,y1),b=(x2,y2)

  必修⑤公式表

  81、数列前n项和与通项公式的关系:

  aS1,n1;n(数列{an}的前n项的和为sna1a2aSn)。nSn1,n2。82、等差、等比数列公式对比nN等差数列等比数列定义式aanan1danq(q0)n1通项公式及a1推广公式anaa1n1mddana1qnnmnanamqnm中项公式若a,A,b成等差,则Aab若a,G,b成等比,则G22ab运算性质若mnpq2r,则若mnpq2r,则anamapaq2aranamapaqa2r前n项和公Sna1annna21q1,式Snnann112da11-qna11qanq1q,q1。一个性质Sm,S2mSm,S3mS2m成等差数列Sm,S2mSm,S3mS2m成等比数列83、解不等式(1)、含有绝对值的不等式

  当a>0时,有xax2a2axa。[小于取中间]

  xax2a2xa或xa。[大于取两边]

  (2)、解一元二次不等式ax2bxc0,(a0)的步骤:

  ①求判别式b24ac000②求一元二次方程的解:两相异实根一个实根没有实根③画二次函数yax2bxc的图象

  ④结合图象写出解集

  ax2bxc0解集xxxb2或xx1xx2aR

  ax2bxc0解集xx1xx2

  注:ax2bxc0(a0)解集为Rax2bxc0对xR恒成立0(3)分式不等式:先移项通分,化一边为0,再将除变乘,化为整式不等式,求解。如解分式不等式

  x1x1:先移项x1x10;通分(x1)xx0;再除变乘(2x1)x0,解出。

  84、线性规划:

  直线AxByC0

  (1)一条直线将平面分为三部分(如图):

  AxByC0(2)不等式AxByC0表示直线AxByC0

  AxByC0

  某一侧的平面区域,验证方法:取原点(0,0)代入不

  等式,若不等式成立,则平面区域在原点所在的一侧。假如直线恰好经过原点,则取其它点来验证,例如取点(1,0)。

  (3)线性规划求最值问题:一般情况可以求出平面区域各个顶点的坐标,代入目标函数z,最大的为最大值。

数学必修一知识点总结2

  【公式一】

  设α为任意角,终边相同的角的同一三角函数的值相等:

  sin(2kπ+α)=sinα(k∈Z)

  cos(2kπ+α)=cosα(k∈Z)

  tan(2kπ+α)=tanα(k∈Z)

  cot(2kπ+α)=cotα(k∈Z)

  【公式二】

  设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:

  sin(π+α)=-sinα

  cos(π+α)=-cosα

  tan(π+α)=tanα

  cot(π+α)=cotα

  【公式三】

  任意角α与-α的三角函数值之间的关系:

  sin(-α)=-sinα

  cos(-α)=cosα

  tan(-α)=-tanα

  cot(-α)=-cotα

  【公式四】

  利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:

  sin(π-α)=sinα

  cos(π-α)=-cosα

  tan(π-α)=-tanα

  cot(π-α)=-cotα

  【公式五】

  利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:

  sin(2π-α)=-sinα

  cos(2π-α)=cosα

  tan(2π-α)=-tanα

  cot(2π-α)=-cotα

  【公式六】

  π/2±α及3π/2±α与α的三角函数值之间的关系:

  sin(π/2+α)=cosα

  cos(π/2+α)=-sinα

  tan(π/2+α)=-cotα

  cot(π/2+α)=-tanα

  sin(π/2-α)=cosα

  cos(π/2-α)=sinα

  tan(π/2-α)=cotα

  cot(π/2-α)=tanα

  sin(3π/2+α)=-cosα

  cos(3π/2+α)=sinα

  tan(3π/2+α)=-cotα

  cot(3π/2+α)=-tanα

  sin(3π/2-α)=-cosα

  cos(3π/2-α)=-sinα

  tan(3π/2-α)=cotα

  cot(3π/2-α)=tanα

  (以上k∈Z)

  【高一数学函数复习资料】

  一、定义与定义式:

  自变量x和因变量y有如下关系:

  y=kx+b

  则此时称y是x的一次函数。

  特别地,当b=0时,y是x的正比例函数。

  即:y=kx(k为常数,k≠0)

  二、一次函数的性质:

  的变化值与对应的x的变化值成正比例,比值为k

  即:y=kx+b(k为任意不为零的实数b取任何实数)

  当x=0时,b为函数在y轴上的截距。

  三、一次函数的图像及性质:

  作法与图形:通过如下3个步骤

  (1)列表;

  (2)描点;

  (3)连线,可以作出一次函数的图像——一条直线。因此,作一次函数的图像只需知道2点,并连成直线即可。(通常找函数图像与x轴和y轴的交点)

  性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像总是过原点。

  ,b与函数图像所在象限:

  当k>0时,直线必通过一、三象限,y随x的增大而增大;

  当k

  当b>0时,直线必通过一、二象限;

  当b=0时,直线通过原点

  当b

  特别地,当b=O时,直线通过原点O(0,0)表示的是正比例函数的图像。

  这时,当k>0时,直线只通过一、三象限;当k

  四、确定一次函数的表达式:

  已知点A(x1,y1);B(x2,y2),请确定过点A、B的一次函数的`表达式。

  (1)设一次函数的表达式(也叫解析式)为y=kx+b。

  (2)因为在一次函数上的任意一点P(x,y),都满足等式y=kx+b。所以可以列出2个方程:y1=kx1+b……①和y2=kx2+b……②

  (3)解这个二元一次方程,得到k,b的值。

  (4)最后得到一次函数的表达式。

  五、一次函数在生活中的应用:

  当时间t一定,距离s是速度v的一次函数。s=vt。

  当水池抽水速度f一定,水池中水量g是抽水时间t的一次函数。设水池中原有水量S。g=S-ft。

  六、常用公式:(不全,希望有人补充)

  求函数图像的k值:(y1-y2)/(x1-x2)

  求与x轴平行线段的中点:|x1-x2|/2

  求与y轴平行线段的中点:|y1-y2|/2

  求任意线段的长:√(x1-x2)^2+(y1-y2)^2(注:根号下(x1-x2)与(y1-y2)的平方和)

数学必修一知识点总结3

  一、集合及其表示

  1、集合的含义:

  “集合”这个词首先让我们想到的是上体育课或者开会时老师经常喊的“全体集合”。数学上的“集合”和这个意思是一样的,只不过一个是动词一个是名词而已。

  所以集合的含义是:某些指定的对象集在一起就成为一个集合,简称集,其中每一个对象叫元素。比如高一二班集合,那么所有高一二班的同学就构成了一个集合,每一个同学就称为这个集合的元素。

  2、集合的表示

  通常用大写字母表示集合,用小写字母表示元素,如集合A={a,b,c}。a、b、c就是集合A中的元素,记作a∈A,相反,d不属于集合A,记作d?A。

  有一些特殊的集合需要记忆:

  非负整数集(即自然数集)N正整数集N_或N+

  整数集Z有理数集Q实数集R

  集合的表示方法:列举法与描述法。

  ①列举法:{a,b,c……}

  ②描述法:将集合中的元素的公共属性描述出来。如{x?R|x-3>2},{x|x-3>2},{(x,y)|y=x2+1}

  ③语言描述法:例:{不是直角三角形的三角形}

  例:不等式x-3>2的解集是{x?R|x-3>2}或{x|x-3>2}

  强调:描述法表示集合应注意集合的代表元素

  A={(x,y)|y=x2+3x+2}与B={y|y=x2+3x+2}不同。集合A中是数组元素(x,y),集合B中只有元素y。

  3、集合的三个特性

  (1)无序性

  指集合中的元素排列没有顺序,如集合A={1,2},集合B={2,1},则集合A=B。

  例题:集合A={1,2},B={a,b},若A=B,求a、b的值。

  解:,A=B

  注意:该题有两组解。

  (2)互异性

  指集合中的元素不能重复,A={2,2}只能表示为{2}

  (3)确定性

  集合的确定性是指组成集合的元素的性质必须明确,不允许有模棱两可、含混不清的。情况。

  集合的含义

  集合的中元素的三个特性:

  元素的确定性如:世界上的山

  元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y}

  元素的无序性:如:{a,b,c}和{a,c,b}是表示同一个集合

  3、集合的表示:{…}如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}

  用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}

  集合的表示方法:列举法与描述法。

  注意:常用数集及其记法:

  非负整数集(即自然数集)记作:N

  正整数集NxN+整数集Z有理数集Q实数集R

  列举法:{a,b,c……}

  描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。{x(R|x—3>2},{x|x—3>2}

  语言描述法:例:{不是直角三角形的三角形}

  Venn图:

  4、集合的分类:

  有限集含有有限个元素的集合

  无限集含有无限个元素的集合

  空集不含任何元素的集合例:{x|x2=—5}

  对数函数

  对数函数的一般形式为,它实际上就是指数函数的反函数。因此指数函数里对于a的规定,同样适用于对数函数。

  右图给出对于不同大小a所表示的函数图形:

  可以看到对数函数的图形只不过的指数函数的图形的关于直线y=x的对称图形,因为它们互为反函数。

  (1)对数函数的定义域为大于0的实数集合。

  (2)对数函数的值域为全部实数集合。

  (3)函数总是通过(1,0)这点。

  (4)a大于1时,为单调递增函数,并且上凸;a小于1大于0时,函数为单调递减函数,并且下凹。

  (5)显然对数函数。

  1、函数零点的定义

  (1)对于函数)(xfy,我们把方程0)(xf的实数根叫做函数)(xfy)的零点。

  (2)方程0)(xf有实根函数(yfx)的图像与x轴有交点函数(yfx)有零点。因此判断一个函数是否有零点,有几个零点,就是判断方程0)(xf是否有实数根,有几个实数根。函数零点的求法:解方程0)(xf,所得实数根就是(fx)的零点(3)变号零点与不变号零点

  ①若函数(fx)在零点0x左右两侧的函数值异号,则称该零点为函数(fx)的变号零点。②若函数(fx)在零点0x左右两侧的函数值同号,则称该零点为函数(fx)的不变号零点。

  ③若函数(fx)在区间,ab上的图像是一条连续的曲线,则0

  2、函数零点的判定

  (1)零点存在性定理:如果函数)(xfy在区间],[ba上的图象是连续不断的曲线,并且有(fa)(fb),那么,函数(xfy)在区间,ab内有零点,即存在,(0bax,使得0)(0xf,这个0x也就是方程0)(xf的根。

  (2)函数)(xfy零点个数(或方程0)(xf实数根的个数)确定方法

  ①代数法:函数)(xfy的零点0)(xf的根;②(几何法)对于不能用求根公式的方程,可以将它与函数)(xfy的图象联系起来,并利用函数的性质找出零点。

  (3)零点个数确定

  0)(xfy有2个零点0)(xf有两个不等实根;0)(xfy有1个零点0)(xf有两个相等实根;0)(xfy无零点0)(xf无实根;对于二次函数在区间,ab上的零点个数,要结合图像进行确定。

  3、二分法

  (1)二分法的定义:对于在区间[,]ab上连续不断且(fa)(fb)的函数(yfx),通过不断地把函数(yfx)的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点的近似值的方法叫做二分法;

  (2)用二分法求方程的近似解的步骤:

  ①确定区间[,]ab,验证(fa)(fb)给定精确度e;

  ②求区间(,)ab的中点c;③计算(fc);

  (ⅰ)若(fc),则c就是函数的零点;

  (ⅱ)若(fa)(fc),则令bc(此时零点0(,)xac);(ⅲ)若(fc)(fb),则令ac(此时零点0(,)xcb);

  ④判断是否达到精确度e,即ab,则得到零点近似值为a(或b);否则重复②至④步。

  集合间的基本关系

  1、子集,A包含于B,记为:,有两种可能

  (1)A是B的一部分,

  (2)A与B是同一集合,A=B,A、B两集合中元素都相同。

  反之:集合A不包含于集合B,记作。

  如:集合A={1,2,3},B={1,2,3,4},C={1,2,3,4},三个集合的关系可以表示为,,B=C。A是C的子集,同时A也是C的真子集。

  2、真子集:如果A?B,且A?B那就说集合A是集合B的真子集,记作AB(或BA)

  3、不含任何元素的'集合叫做空集,记为Φ。Φ是任何集合的子集。

  4、有n个元素的集合,含有2n个子集,2n-1个真子集,含有2n-2个非空真子集。如A={1,2,3,4,5},则集合A有25=32个子集,25-1=31个真子集,25-2=30个非空真子集。

  例:集合共有个子集。(13年高考第4题,简单)

  练习:A={1,2,3},B={1,2,3,4},请问A集合有多少个子集,并写出子集,B集合有多少个非空真子集,并将其写出来。

  解析:

  集合A有3个元素,所以有23=8个子集。分别为:①不含任何元素的子集Φ;②含有1个元素的子集{1}{2}{3};③含有两个元素的子集{1,2}{1,3}{2,3};④含有三个元素的子集{1,2,3}。

  集合B有4个元素,所以有24-2=14个非空真子集。具体的子集自己写出来。

  此处这么罗嗦主要是为了让同学们注意写的顺序,数学就是要讲究严谨性和逻辑性的。一定要养成自己的逻辑习惯。如果就是为了提高计算能力倒不如直接去菜场卖菜算了,绝对能飞速提高的,那学数学也没什么必要了。

  一、函数模型及其应用

  本节主要包括函数的模型、函数的应用等知识点。主要是理解函数解应用题的一般步骤灵活利用函数解答实际应用题。

  1、常见的函数模型有一次函数模型、二次函数模型、指数函数模型、对数函数模型、分段函数模型等。

  2、用函数解应用题的基本步骤是:

  (1)阅读并且理解题意。(关键是数据、字母的实际意义);

  (2)设量建模;

  (3)求解函数模型;

  (4)简要回答实际问题。

  常见考法:

  本节知识在段考和高考中考查的形式多样,频率较高,选择题、填空题和解答题都有。多考查分段函数和较复杂的函数的最值等问题,属于拔高题,难度较大。

  误区提醒:

  1、求解应用性问题时,不仅要考虑函数本身的定义域,还要结合实际问题理解自变量的取值范围。

  2、求解应用性问题时,首先要弄清题意,分清条件和结论,抓住关键词和量,理顺数量关系,然后将文字语言转化成数学语言,建立相应的数学模型。

  【典型例题】

  例1:

  (1)某种储蓄的月利率是0。36%,今存入本金100元,求本金与利息的和(即本息和)y(元)与所存月数x之间的函数关系式,并计算5个月后的本息和(不计复利)。

  (2)按复利计算利息的一种储蓄,本金为a元,每期利率为r,设本利和为y,存期为x,写出本利和y随存期x变化的函数式。如果存入本金1000元,每期利率2。25%,试计算5期后的本利和是多少?解:(1)利息=本金×月利率×月数。y=100+100×0。36%·x=100+0。36x,当x=5时,y=101。8,∴5个月后的本息和为101。8元。

  例2:

  某民营企业生产A,B两种产品,根据市场调查和预测,A产品的利润与投资成正比,其关系如图1,B产品的利润与投资的算术平方根成正比,其关系如图2(注:利润与投资单位是万元)

  (1)分别将A,B两种产品的利润表示为投资的函数,并写出它们的函数关系式。

  (2)该企业已筹集到10万元资金,并全部投入A,B两种产品的生产,问:怎样分配这10万元投资,才能是企业获得利润,其利润约为多少万元。(精确到1万元)。

  集合

  集合具有某种特定性质的事物的总体。这里的“事物”可以是人,物品,也可以是数学元素。例如:

  1、分散的人或事物聚集到一起;使聚集:紧急~。

  2、数学名词。一组具有某种共同性质的数学元素:有理数的~。

  3、口号等等。集合在数学概念中有好多概念,如集合论:集合是现代数学的基本概念,专门研究集合的理论叫做集合论。康托(Cantor,G.F.P.,1845年—1918年,德国数学家先驱,是集合论的,目前集合论的基本思想已经渗透到现代数学的所有领域。

  集合,在数学上是一个基础概念。什么叫基础概念?基础概念是不能用其他概念加以定义的概念。集合的概念,可通过直观、公理的方法来下“定义”。集合

  集合是把人们的直观的或思维中的某些确定的能够区分的对象汇合在一起,使之成为一个整体(或称为单体),这一整体就是集合。组成一集合的那些对象称为这一集合的元素(或简称为元)。

  元素与集合的关系

  元素与集合的关系有“属于”与“不属于”两种。

  集合与集合之间的关系

  某些指定的对象集在一起就成为一个集合集合符号,含有有限个元素叫有限集,含有无限个元素叫无限集,空集是不含任何元素的集,记做Φ。空集是任何集合的子集,是任何非空集的真子集。任何集合是它本身的子集。子集,真子集都具有传递性。『说明一下:如果集合A的所有元素同时都是集合B的元素,则A称作是B的子集,写作A?B。若A是B的子集,且A不等于B,则A称作是B的真子集,一般写作A?B。中学教材课本里将?符号下加了一个≠符号(如右图),不要混淆,考试时还是要以课本为准。所有男人的集合是所有人的集合的真子集。』

  集合的几种运算法则

  并集:以属于A或属于B的元素为元素的集合称为A与B的并(集),记作A∪B(或B∪A),读作“A并B”(或“B并A”),即A∪B={x|x∈A,或x∈B}交集:以属于A且属于B的元差集表示

  素为元素的集合称为A与B的交(集),记作A∩B(或B∩A),读作“A交B”(或“B交A”),即A∩B={x|x∈A,且x∈B}例如,全集U={1,2,3,4,5}A={1,3,5}B={1,2,5}。那么因为A和B中都有1,5,所以A∩B={1,5}。再来看看,他们两个中含有1,2,3,5这些个元素,不管多少,反正不是你有,就是我有。那么说A∪B={1,2,3,5}。图中的阴影部分就是A∩B。有趣的是;例如在1到105中不是3,5,7的整倍数的数有多少个。结果是3,5,7每项减集合

  1再相乘。48个。对称差集:设A,B为集合,A与B的对称差集A?B定义为:A?B=(A-B)∪(B-A)例如:A={a,b,c},B={b,d},则A?B={a,c,d}对称差运算的另一种定义是:A?B=(A∪B)-(A∩B)无限集:定义:集合里含有无限个元素的集合叫做无限集有限集:令N_是正整数的全体,且N_n={1,2,3,……,n},如果存在一个正整数n,使得集合A与N_n一一对应,那么A叫做有限集合。差:以属于A而不属于B的元素为元素的集合称为A与B的差(集)。记作:AB={x│x∈A,x不属于B}。注:空集包含于任何集合,但不能说“空集属于任何集合”。补集:是从差集中引出的概念,指属于全集U不属于集合A的元素组成的集合称为集合A的补集,记作CuA,即CuA={x|x∈U,且x不属于A}空集也被认为是有限集合。例如,全集U={1,2,3,4,5}而A={1,2,5}那么全集有而A中没有的3,4就是CuA,是A的补集。CuA={3,4}。在信息技术当中,常常把CuA写成~A。

  集合元素的性质

  1.确定性:每一个对象都能确定是不是某一集合的元素,没有确定性就不能成为集合,例如“个子高的同学”“很小的数”都不能构成集合。这个性质主要用于判断一个集合是否能形成集合。

  2.独立性:集合中的元素的个数、集合本身的个数必须为自然数。

  3.互异性:集合中任意两个元素都是不同的对象。如写成{1,1,2},等同于{1,2}。互异性使集合中的元素是没有重复,两个相同的对象在同一个集合中时,只能算作这个集合的一个元素。

  4.无序性:{a,b,c}{c,b,a}是同一个集合。

  5.纯粹性:所谓集合的纯粹性,用个例子来表示。集合A={x|x

数学必修一知识点总结4

  第一章集合与函数概念

  一、集合有关概念

  1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素.

  2、集合的中元素的三个特性:

  1.元素的确定性;2.元素的互异性;3.元素的无序性

  说明:(1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素.

  (2)任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素.

  (3)集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样.

  (4)集合元素的三个特性使集合本身具有了确定性和整体性.

  3、集合的表示:

  { … }如{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}

  1.用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}

  2.集合的表示方法:列举法与描述法.

  注意啊:常用数集及其记法:

  非负整数集(即自然数集)记作:N

  正整数集N*或N+整数集Z有理数集Q实数集R

  关于“属于”的概念

  集合的元素通常用小写的拉丁字母表示,如:a是集合A的元素,就说a属于集合A记作a∈A ,相反,a不属于集合A记作a?A

  列举法:把集合中的元素一一列举出来,然后用一个大括号括上.

  描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法.用确定的条件表示某些对象是否属于这个集合的方法.

  ①语言描述法:例:{不是直角三角形的三角形}

  ②数学式子描述法:例:不等式x-3>2的解集是{x?R| x-3>2}或{x| x-3>2}

  4、集合的分类:

  1.有限集含有有限个元素的集合

  2.无限集含有无限个元素的集合

  3.空集不含任何元素的集合例:{x|x2=-5}

  高一数学必修一综合测试真题

  第I卷(选择题)

  1.设集合U={1,2,3,4,5},A={1,2,3},B={2,3,4},则U(A∩B)=

  A.{1,4,5}B.{2,3}C.{4,5}D.{1,5}

  2.设集合A={x|x2﹣4x+3≥0},B={x|2x﹣3≤0},则A∪B=

  A.(﹣∞,1]∪[3,+∞)B.[1,3]C.D.

  3.若全集U={1,2,3,4,5},集合M={1,2},N={2,3,4},则(UM)∩N等于

  A.{1}B.{2}C.{3,4}D.{5}

  4.已知集合A={﹣1,2},B={x∈Z|0≤x≤2},则A∩B等于

  A.{0}B.{2}C.φD.φ

  5.设集合A={x|2x≤8},B={x|x≤m2+m+1},若A∪B=A,则实数m的取值范围为.

  A.[﹣2,1)B.[﹣2,1]C.[﹣2,﹣1)D.[﹣1,1)

  6.已知集合A={1,2,3},B={0,1,2},则A∩B的子集个数为

  A.2B.3C.4D.16

  7.如果集合A={x|ax2﹣2x﹣1=0}只有一个元素则a的值是

  A.0B.0或1C.﹣1D.0或﹣1

  8.已知集合M={x|(x﹣1)=0},那么

  A.0∈MB.1MC.﹣1∈MD.0M

  9.设A={x|﹣1≤x<2},B={x|x<a},若A∩B≠,则a的取值范围是

  A.a<2B.a>﹣2C.a>﹣1D.﹣1<a≤2

  10.以下五个写法中:①{0}∈{0,1,2};②{1,2};③{0,1,2}={2,0,1};④0∈;⑤A∩=A,正确的个数有

  A.1个B.2个C.3个D.4个

  11.集合{1,2,3}的真子集的个数为

  A.5B.6C.7D.8

  12.已知3∈{1,a,a﹣2},则实数a的值为

  A.3B.5C.3或5D.无解

  13.已知集合A={﹣1,1},B={x|ax+2=0},若BA,则实数a的所有可能取值的集合为

  A.{﹣2}B.{2}C.{﹣2,2}D.{﹣2,0,2}

  14.设所有被4除余数为k(k=0,1,2,3)的整数组成的集合为Ak,即Ak={x|x=4n+k,n∈Z},则下列结论中错误的是A.20xx∈A0B.﹣1∈A3C.a∈Ak,b∈Ak,则a﹣b∈A0D.a+b∈A3,则a∈A1,b∈A2

  二、填空题

  16.已知集合A={﹣1,3,2m﹣1},集合B={3,m2}.若BA,则实数m=.17.对于任意集合X与Y,定义:①X﹣Y={x|x∈X且xY},②X△Y=(X﹣Y)∪(Y﹣X),(X△Y称为X与Y的对称差).已知A={y|y=2x﹣1,x∈R},B={x|x2﹣9≤0},则A△B=.

  18.函数y=的定义域为A,值域为B,则A∩B=.

  19.若集合为{1,a,}={0,a2,a+b}时,则a﹣b=.20.用M[A]表示非空集合A中的元素个数,记|A﹣B|=,若A={1,2,3},B={x||x2﹣2x﹣3|=a},且|A﹣B|=1,则实数a的取值范围为.

  三、解答题

  21.已知不等式x2+mx+3≤0的解集为A=[1,n],集合B={x|x2﹣ax+a≤0}.

  (1)求m﹣n的'值;

  (2)若A∪B=A,求a的取值范围.

  22.已知函数f(x)的定义域为(0,4),函数g(x)=f(x+1)的定义域为集合A,集合B={x|a<x<2a﹣1},若A∩B=B,求实数a的取值范围.

  23.已知A={x|x2+x>0},B={x|x2+ax+b≤0},且A∩B={x|0<x≤2},A∪B=R,求a、b的值.24.已知集合A={x|x2+px+1=0},B={x|x2+qx+r=0},且A∩B={1},(UA)∩B={﹣2},求实数p、q、r的值.

  25.已知元素为实数的集合S满足下列条件:①0S,1S;②若a∈S,则∈S.

  (Ⅰ)若{2,﹣2}S,求使元素个数最少的集合S;

  (Ⅱ)若非空集合S为有限集,则你对集合S的元素个数有何猜测?并请证明你的猜测正确.

  26.已知集合A={x|x2﹣3x﹣4≤0},B={x|x2﹣2mx+m2﹣9≤0},C={y|y=2x+b,x∈R}

  (1)若A∩B=[0,4],求实数m的值;

  (2)若A∩C=,求实数b的取值范围;

  (3)若A∪B=B,求实数m的取值范围.

  试卷答案

  1.A 2.D 3.C 4.B 5.B 6.C 7.D 8.D 9.C 10.B 11.C 12.B 13.D 14.D 16.1

  17.[﹣3,﹣1)∪(3,+∞)

  18.[0,2]

  19.﹣1

  20.0≤a<4或a>4

  21.(1)利用韦达定理,求出m,n,即可求m﹣n的值;

  (2)若A∪B=A,BA,分类讨论求a的取值范围.

  【解答】解:(1)∵不等式x2+mx+3≤0的解集为A=[1,n],

  ∴,∴m=﹣4,n=3,

  ∴m﹣n=﹣7;

  (2)A∪B=A,∴BA.

  ①B=,△=a2﹣4a<0,∴0<a<4;②B≠,设f(x)=x2﹣ax+a,则,∴4≤a≤,

  综上所述,0<a≤.

  22.【解答】解:要使g(x)有意义,则:0<x+1<4,

  ∴﹣1<x<3,

  ∴A={x|﹣1<x<3};

  ∵A∩B=B,

  ∴BA;

  ①若B=,满足BA,

  则a≥2a﹣1,解得a≤1;

  ②若B≠,则,

  解得1<a≤2;

  综上,实数a的取值范围是(﹣∞,2].

  23.【解答】解:集合A={x|x2+x>0}={x|x<﹣1或x>0}∴﹣1,2是方程x2+ax+b=0的两个根,

  ∴a=﹣1,b=﹣2

  即a,b的值分别是﹣1,﹣2.

  24.【解答】解:集合A={x|x2+px+1=0},B={x|x2+qx+r=0},且A∩B={1},

  ∴1+p+1=0,解得p=﹣2;

  又1+q+r=0,①

  (UA)∩B={﹣2},

  ∴4﹣2q+r=0,②

  由①②组成方程组解得q=1,r=﹣2;

  ∴实数p=﹣2,q=1,r=﹣2.

  本题考查了集合的定义与应用问题,是基础题目.

  25.【解答】解:(Ⅰ)2∈S,则﹣1∈S,∈S,可得2∈S;﹣2∈S,则∈S,∈S,可得﹣2∈S,

  ∴{2,﹣2}S,使元素个数最少的集合S为{2,﹣1,,﹣2,,}.

  (Ⅱ)非空有限集S的元素个数是3的倍数.

  证明如下:

  (1)设a∈S则a≠0,1且a∈S,则∈S,=∈S,=a∈S

  假设a=,则a2﹣a+1=0(a≠1)m无实数根,故a≠.

  同理可证a,,两两不同.

  即若有a∈S,则必有{a,,}S.

  (2)若存在b∈S(b≠a),必有{b,,}S.{a,,}∩{b,,}=.

  于是{a,,,b,,}S.

  上述推理还可继续,由于S为有限集,故上述推理有限步可中止,

  ∴S的元素个数为3的倍数.

  26.【解答】解:(1)由A中不等式变形得:(x﹣4)(x+1)≤0,

  解得:﹣1≤x≤4,即A=[﹣1,4];

  由B中不等式变形得:(x﹣m+3)(x﹣m﹣3)≤0,

  解得:m﹣3≤x≤m+3,即B=[m﹣3,m+3],

  ∵A∩B=[0,4],

  ∴,

  解得:m=3;

  (2)∵由C中y=2x+b>b,x∈R,得到C=(b,+∞),且A∩C=,A=[﹣1,4],

  ∴实数b的范围为b≥4;

  (3)∵A∪B=B,

  ∴AB,

  ∴,

  解得:1≤m≤2.

数学必修一知识点总结5

  几何体和体积具有柱、锥、台、球的结构特征

  (1)棱柱:

  几何特征:两个底面是平行于对应边的全等多边形;侧面和对角为平行四边形;侧边平行相等;平行于底面的截面是与底面相等的多边形.

  (2)棱锥

  几何特征:侧面和对角为三角形;平行于底面的截面与底面相似,相似比等于从顶点到截面距离和高比的平方.

  (3)棱台:

  几何特征:上下底面是相似的平行多边形侧面是梯形侧边交给原棱锥的顶点

  (4)圆柱:定义:以矩形一侧所在的直线为轴旋转,其侧旋转

  几何特征:底面为全等圆;母线与轴平行;轴垂直于底圆的半径;侧展图为矩形.

  (5)圆锥:定义:旋转轴以直角三角形的直角边为旋转轴,旋转一周

  几何特征:底面为圆;母线交于圆锥的顶点;侧展图为扇形.

  (6)圆台:定义:旋转轴以垂直直角梯形和底部腰部为旋转轴,旋转一周

  几何特征:上下底面有两个圆;侧母线交给原圆锥的顶点;侧展图为弓形.

  (7)球体:定义:以半圆直径直线为旋转轴,半圆面旋转一周形成的几何体

  几何特征:球的截面是圆的;球面上任何一点到球心的距离等于半径.

  2.空间几何三视图

  定义三个视图:正视图(光线从几何前面投影到后面);侧视图(从左到右)

  俯视图(从上到下)

  注:正视图反映物体的高度和长度;俯视图反映物体的长度和宽度;侧视图反映物体的高度和宽度.

  3.空间几何直观图-斜二测绘法

  斜二测绘法特点:与x轴平行的线段仍与x平行,长度不变;

  与y轴平行的线段仍与y平行,长度为原来的一半.

  4.柱、锥、台的表面积和体积

  (1)几何体的表面积是几何体各个面积的和.

  (2)特殊几何体表面积公式(c底部周长,h为高,为斜高,l为母线)

  (3)柱、锥、台的体积公式

  总结高中数学必修二知识点:直线和方程

  (1)直线倾斜角

  定义:x轴向和直线向上方向之间的角称为直线倾斜角.特别是当直线与x轴平行或重合时,我们将其倾斜角设置为0度.因此,倾斜角的值范围为0°≤α<180°

  (2)直线斜率

  定义:倾斜角不是90°直线,倾斜角的'正切称为直线的斜率.直线斜率常用k表示.即.斜率反映了直线和轴的倾斜程度.

  当时,;当时,;当时,.

  两点以上的直线斜率公式:

  注意以下四点:(1)当时公式右侧毫无意义,直线斜率不存在,倾斜角90°;

  (2)k与P1、P2的顺序无关;(3)以后求斜率可以通过直线上两点的坐标直接获得,而不是倾斜角;

  (4)直线上两点的坐标先求斜率可以获得直线的倾斜角.

  (3)直线方程

  点斜:直线斜率k,且过点

  注:当直线的斜率为0时°时,k=直线方程为y=y1.

  当直线的斜率为90时°当直线斜率不存在时,其方程不能用点斜表示.但是l上的每一个横坐标都等于x所以它的方程是x=x1.

  斜截:,直线斜率为k,Y轴上直线的截距为b

  两点式:()直线两点,截矩式:

  直线与轴交点,与轴交点,即与轴和轴的截距.

  一般式:(A,B不全为0)

  注:各种适用范围的特殊方程,如:

  (4)平行于x轴的直线:(b为常数);与y轴平行的直线:(a为常数);

  (5)直线系方程:即具有一定共同性质的直线

  (一)平行直线系

  直线系统平行于已知直线(不全为0):(C为常数)

  (二)垂直线系

  直线系垂直于已知直线(不全为0的常数):(C为常数)

  (3)直线系过定点

  ()直线系斜率为k:,直线过定点;

  ()有两条直线,交点的直线系方程为

  (参数)直线不在直线系中.

  (6)两条直线平行垂直

  注:利用斜率判断直线的平行和垂直时,应注意斜率的存在.

  (7)两条直线的交点

  相交

  交点坐标是方程组的一组解.

  方程组无解;方程组有无数的解和重叠

  (8)两点间距公式:平面直角坐标系中的两点

  (9)点到直线距离公式:点到直线的距离

  (10)两平行直线距离公式

  在任何一条直线上任取一点,然后转化为点到直线的距离求解。

数学必修一知识点总结6

  ⑴公差为d的等差数列,各项同加一数所得数列仍是等差数列,其公差仍为d.

  ⑵公差为d的等差数列,各项同乘以常数k所得数列仍是等差数列,其公差为kd.

  ⑶若{a}、{b}为等差数列,则{a±b}与{ka+b}(k、b为非零常数)也是等差数列.

  ⑷对任何m、n,在等差数列{a}中有:a=a+(n-m)d,特别地,当m=1时,便得等差数列的通项公式,此式较等差数列的通项公式更具有一般性.

  ⑸、一般地,如果l,k,p,…,m,n,r,…皆为自然数,且l+k+p+…=m+n+r+…(两边的自然数个数相等),那么当{a}为等差数列时,有:a+a+a+…=a+a+a+….

  ⑹公差为d的等差数列,从中取出等距离的项,构成一个新数列,此数列仍是等差数列,其公差为kd(k为取出项数之差).

  ⑺如果{a}是等差数列,公差为d,那么,a,a,…,a、a也是等差数列,其公差为-d;在等差数列{a}中,a-a=a-a=md.(其中m、k、)

  ⑻在等差数列中,从第一项起,每一项(有穷数列末项除外)都是它前后两项的等差中项.

  ⑼当公差d>0时,等差数列中的数随项数的增大而增大;当d

  ⑽设a,a,a为等差数列中的三项,且a与a,a与a的项距差之比=(≠-1),则a=.

  ⑴数列{a}为等差数列的充要条件是:数列{a}的`前n项和S可以写成S=an+bn的形式(其中a、b为常数).

  ⑵在等差数列{a}中,当项数为2n(nN)时,S-S=nd,=;当项数为(2n-1)(n)时,S-S=a,=.

  ⑶若数列{a}为等差数列,则S,S-S,S-S,…仍然成等差数列,公差为.

  ⑷若两个等差数列{a}、{b}的前n项和分别是S、T(n为奇数),则=.

  ⑸在等差数列{a}中,S=a,S=b(n>m),则S=(a-b).

  ⑹等差数列{a}中,是n的一次函数,且点(n,)均在直线y=x+(a-)上.

  ⑺记等差数列{a}的前n项和为S.①若a>0,公差d0,则当a≤0且a≥0时,S小.

数学必修一知识点总结7

  1、圆的定义:平面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径.

  2、圆的方程

  (1)标准方程,圆心,半径为r;

  (2)一般方程

  当时,方程表示圆,此时圆心为,半径为

  当时,表示一个点;当时,方程不表示任何图形.

  (3)求圆方程的方法:

  一般都采用待定系数法:先设后求.确定一个圆需要三个独立条件,若利用圆的标准方程,需求出a,b,r;若利用一般方程,需要求出D,E,F;

  另外要注意多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的位置.

  3、高中数学必修二知识点总结:直线与圆的位置关系:

  直线与圆的位置关系有相离,相切,相交三种情况:

  (1)设直线,圆,圆心到l的距离为,则有;;

  (2)过圆外一点的切线:①k不存在,验证是否成立②k存在,设点斜式方程,用圆心到该直线距离=半径,求解k,得到方程【一定两解】

  (3)过圆上一点的切线方程:圆(x-a)2+(y-b)2=r2,圆上一点为(x0,y0),则过此点的切线方程为(x0-a)(x-a)+(y0-b)(y-b)=r2

  4、圆与圆的位置关系:通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定.

  设圆,两圆的位置关系常通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定.

  当时两圆外离,此时有公切线四条;

  当时两圆外切,连心线过切点,有外公切线两条,内公切线一条;

  当时两圆相交,连心线垂直平分公共弦,有两条外公切线;

  当时,两圆内切,连心线经过切点,只有一条公切线;

  当时,两圆内含;当时,为同心圆.

  注意:已知圆上两点,圆心必在中垂线上;已知两圆相切,两圆心与切点共线

  5、空间点、直线、平面的位置关系

  公理1:如果一条直线的两点在一个平面内,那么这条直线是所有的点都在这个平面内.

  应用:判断直线是否在平面内

  用符号语言表示公理1:

  公理2:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线

  符号:平面α和β相交,交线是a,记作α∩β=a.

  符号语言:

  公理2的作用:

  ①它是判定两个平面相交的方法.

  ②它说明两个平面的交线与两个平面公共点之间的关系:交线必过公共点.

  ③它可以判断点在直线上,即证若干个点共线的重要依据.

  公理3:经过不在同一条直线上的三点,有且只有一个平面.

  推论:一直线和直线外一点确定一平面;两相交直线确定一平面;两平行直线确定一平面.

  公理3及其推论作用:①它是空间内确定平面的依据②它是证明平面重合的依据

  公理4:平行于同一条直线的两条直线互相平行

  学好数学的方法

  一、课内重视听讲,课后及时复习

  课堂上特别要抓住基础知识和基本技能的学习,课后要及时复习不留疑点。

  首先要在做各种习题之前将老师所讲的知识点回忆一遍,正确掌握各类公式的推理过程,尽量回忆而不采用不清楚立即翻书之举。认真独立完成作业,勤于思考,对于有些题目由于自己的思路不清,一时难以解出,应让自己冷静下来认真分析题目,尽量自己解决。在每个阶段的学习中要进行整理和归纳总结,把知识的点、线、面结合起来交织成知识网络,纳入自己的知识体系。

  二、适当多做题,养成良好的解题习惯

  1、要想学好数学,多做题目是必须的,熟悉掌握各种题型的解题思路。

  2、刚开始要从基础题入手,以课本上的习题为准,反复练习打好基础,再找一些课外的习题,以帮助开拓思路,提高自己的分析、解决能力,掌握一般的解题规律。

  3、对于一些易错题,可备有错题集,写出自己的解题思路和正确的解题过程两者一起比较找出自己的错误所在,以便及时更正。

  4、在平时要养成良好的解题习惯。让自己的精力高度集中,使大脑兴奋,思维敏捷,能够进入最佳状态,在考试中能运用自如。实践证明:越到关键时候,你所表现的.解题习惯与平时练习无异。

  高一必修二数学知识大全

  ①异面直线定义:不同在任何一个平面内的两条直线

  ②异面直线性质:既不平行,又不相交.

  ③异面直线判定:过平面外一点与平面内一点的直线与平面内不过该店的直线是异面直线

  ④异面直线所成角:作平行,令两线相交,所得锐角或直角,即所成角.两条异面直线所成角的范围是(0°,90°],若两条异面直线所成的角是直角,我们就说这两条异面直线互相垂直.

  求异面直线所成角步骤:

  A、利用定义构造角,可固定一条,平移另一条,或两条同时平移到某个特殊的位置,顶点选在特殊的位置上.B、证明作出的角即为所求角C、利用三角形来求角

  (7)等角定理:如果一个角的两边和另一个角的两边分别平行,那么这两角相等或互补.

  (8)空间直线与平面之间的位置关系

  直线在平面内——有无数个公共点.

  三种位置关系的符号表示:aαa∩α=Aa‖α

  (9)平面与平面之间的位置关系:平行——没有公共点;α‖β

  相交——有一条公共直线.α∩β=b

  2、空间中的平行问题

  (1)直线与平面平行的判定及其性质

  线面平行的判定定理:平面外一条直线与此平面内一条直线平行,则该直线与此平面平行.

  线线平行线面平行

  线面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行.线面平行线线平行

  (2)平面与平面平行的判定及其性质

  两个平面平行的判定定理

  (1)如果一个平面内的两条相交直线都平行于另一个平面,那么这两个平面平行

  (线面平行→面面平行),(2)如果在两个平面内,各有两组相交直线对应平行,那么这两个平面平行.

  (线线平行→面面平行),(3)垂直于同一条直线的两个平面平行,两个平面平行的性质定理

  (1)如果两个平面平行,那么某一个平面内的直线与另一个平面平行.(面面平行→线面平行)

  (2)如果两个平行平面都和第三个平面相交,那么它们的交线平行.(面面平行→线线平行)

  3、空间中的垂直问题

  (1)线线、面面、线面垂直的定义

  ①两条异面直线的垂直:如果两条异面直线所成的角是直角,就说这两条异面直线互相垂直.

  ②线面垂直:如果一条直线和一个平面内的任何一条直线垂直,就说这条直线和这个平面垂直.

  ③平面和平面垂直:如果两个平面相交,所成的二面角(从一条直线出发的两个半平面所组成的图形)是直二面角(平面角是直角),就说这两个平面垂直.

  (2)垂直关系的判定和性质定理

  ①线面垂直判定定理和性质定理

  判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直这个平面.

  性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行.

  ②面面垂直的判定定理和性质定理

  判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直.

  性质定理:如果两个平面互相垂直,那么在一个平面内垂直于他们的交线的直线垂直于另一个平面.

  4、空间角问题

  (1)直线与直线所成的角

  ①两平行直线所成的角:规定为.

  ②两条相交直线所成的角:两条直线相交其中不大于直角的角,叫这两条直线所成的角.

  ③两条异面直线所成的角:过空间任意一点O,分别作与两条异面直线a,b平行的直线,形成两条相交直线,这两条相交直线所成的不大于直角的角叫做两条异面直线所成的角.

  (2)直线和平面所成的角

  ①平面的平行线与平面所成的角:规定为.②平面的垂线与平面所成的角:规定为.

  ③平面的斜线与平面所成的角:平面的一条斜线和它在平面内的射影所成的锐角,叫做这条直线和这个平面所成的角.

  求斜线与平面所成角的思路类似于求异面直线所成角:“一作,二证,三计算”.

  在“作角”时依定义关键作射影,由射影定义知关键在于斜线上一点到面的垂线,在解题时,注意挖掘题设中两个主要信息:(1)斜线上一点到面的垂线;(2)过斜线上的一点或过斜线的平面与已知面垂直,由面面垂直性质易得垂线.

  (3)二面角和二面角的平面角

  ①二面角的定义:从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫做二面角的棱,这两个半平面叫做二面角的面.

  ②二面角的平面角:以二面角的棱上任意一点为顶点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫二面角的平面角.

  ③直二面角:平面角是直角的二面角叫直二面角.

  两相交平面如果所组成的二面角是直二面角,那么这两个平面垂直;反过来,如果两个平面垂直,那么所成的二面角为直二面角

  ④求二面角的方法

  定义法:在棱上选择有关点,过这个点分别在两个面内作垂直于棱的射线得到平面角

  垂面法:已知二面角内一点到两个面的垂线时,过两垂线作平面与两个面的交线所成的角为二面角的平面角

数学必修一知识点总结8

  一、集合有关概念

  1.集合的含义

  2.集合的中元素的三个特性:

  (1)元素的确定性,(2)元素的互异性,(3)元素的无序性,3.集合的表示:{…}如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}

  (1)用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}

  (2)集合的表示方法:列举法与描述法。

  ?注意:常用数集及其记法:

  非负整数集(即自然数集)记作:N

  正整数集N_N+整数集Z有理数集Q实数集R

  1)列举法:{a,b,c……}

  2)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。{x?R|x-3>2},{x|x-3>2}

  3)语言描述法:例:{不是直角三角形的三角形}

  4)Venn图:

  4、集合的分类:

  (1)有限集含有有限个元素的集合

  (2)无限集含有无限个元素的集合

  (3)空集不含任何元素的集合例:{x|x2=-5}

  二、集合间的基本关系

  1.“包含”关系—子集

  注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。

  反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA

  2.“相等”关系:A=B(5≥5,且5≤5,则5=5)

  实例:设A={x|x2-1=0}B={-1,1}“元素相同则两集合相等”

  即:①任何一个集合是它本身的子集。A?A

  ②真子集:如果A?B,且A?B那就说集合A是集合B的真子集,记作AB(或BA)

  ③如果A?B,B?C,那么A?C

  ④如果A?B同时B?A那么A=B

  3.不含任何元素的集合叫做空集,记为Φ

  规定:空集是任何集合的子集,空集是任何非空集合的真子集。

  有n个元素的集合,含有2n个子集,2n-1个真子集

  三、集合的运算

  运算类型交集并集补集

  定义由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.记作AB(读作‘A交B’),即AB={x|xA,且xB}.

  由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集.记作:AB(读作‘A并B’),即AB={x|xA,或xB}).

  设S是一个集合,A是S的一个子集,由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集)

  例题:

  1.下列四组对象,能构成集合的是()

  A某班所有高个子的学生B的艺术家C一切很大的书D倒数等于它自身的实数

  2.集合{a,b,c}的真子集共有个

  3.若集合M={y|y=x2-2x+1,xR},N={x|x≥0},则M与N的关系是.

  4.设集合A=,B=,若AB,则的取值范围是

  5.50名学生做的物理、化学两种实验,已知物理实验做得正确得有40人,化学实验做得正确得有31人,两种实验都做错得有4人,则这两种实验都做对的有人。

  6.用描述法表示图中阴影部分的点(含边界上的点)组成的集合M=.

  7.已知集合A={x|x2+2x-8=0},B={x|x2-5x+6=0},C={x|x2-mx+m2-19=0},若B∩C≠Φ,A∩C=Φ,求m的值

  二、函数的有关概念

  1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作:y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.

  注意:

  1.定义域:能使函数式有意义的实数x的集合称为函数的定义域。

  求函数的定义域时列不等式组的主要依据是:

  (1)分式的分母不等于零;

  (2)偶次方根的被开方数不小于零;

  (3)对数式的.真数必须大于零;

  (4)指数、对数式的底必须大于零且不等于1.

  (5)如果函数是由一些基本函数通过四则运算结合而成的那么,它的定义域是使各部分都有意义的x的值组成的集合.

  (6)指数为零底不可以等于零,(7)实际问题中的函数的定义域还要保证实际问题有意义.

  相同函数的判断方法:①表达式相同(与表示自变量和函数值的字母无关);②定义域一致(两点必须同时具备)

  (见课本21页相关例2)

  2.值域:先考虑其定义域

  (1)观察法

  (2)配方法

  (3)代换法

  3.函数图象知识归纳

  (1)定义:在平面直角坐标系中,以函数y=f(x),(x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数y=f(x),(x∈A)的图象.C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上.

  (2)画法

  A、描点法:

  B、图象变换法

  常用变换方法有三种

  1)平移变换

  2)伸缩变换

  3)对称变换

  4.区间的概念

  (1)区间的分类:开区间、闭区间、半开半闭区间

  (2)无穷区间

  (3)区间的数轴表示.

  5.映射

  一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有确定的元素y与之对应,那么就称对应f:AB为从集合A到集合B的一个映射。记作f:A→B

  6.分段函数

  (1)在定义域的不同部分上有不同的解析表达式的函数。

  (2)各部分的自变量的取值情况.

  (3)分段函数的定义域是各段定义域的交集,值域是各段值域的并集.

  补充:复合函数

  如果y=f(u)(u∈M),u=g(x)(x∈A),则y=f[g(x)]=F(x)(x∈A)称为f、g的复合函数。

  二.函数的性质

  1.函数的单调性(局部性质)

  (1)增函数

  设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1

  如果对于区间D上的任意两个自变量的值x1,x2,当x1f(x2),那么就说f(x)在这个区间上是减函数.区间D称为y=f(x)的单调减区间.

  注意:函数的单调性是函数的局部性质;

  (2)图象的特点

  如果函数y=f(x)在某个区间是增函数或减函数,那么说函数y=f(x)在这一区间上具有(严格的)单调性,在单调区间上增函数的图象从左到右是上升的,减函数的图象从左到右是下降的

  (3).函数单调区间与单调性的判定方法

  (A)定义法:

  ○1任取x1,x2∈D,且x1

  ○2作差f(x1)-f(x2);

  ○3变形(通常是因式分解和配方);

  ○4定号(即判断差f(x1)-f(x2)的正负);

  ○5下结论(指出函数f(x)在给定的区间D上的单调性).

  (B)图象法(从图象上看升降)

  (C)复合函数的单调性

  复合函数f[g(x)]的单调性与构成它的函数u=g(x),y=f(u)的单调性密切相关,其规律:“同增异减”

  注意:函数的单调区间只能是其定义域的子区间,不能把单调性相同的区间和在一起写成其并集.

  8.函数的奇偶性(整体性质)

  (1)偶函数

  一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做偶函数.

  (2).奇函数

  一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=—f(x),那么f(x)就叫做奇函数.

  (3)具有奇偶性的函数的图象的特征

  偶函数的图象关于y轴对称;奇函数的图象关于原点对称.

  利用定义判断函数奇偶性的步骤:

  ○1首先确定函数的定义域,并判断其是否关于原点对称;

  ○2确定f(-x)与f(x)的关系;

  ○3作出相应结论:若f(-x)=f(x)或f(-x)-f(x)=0,则f(x)是偶函数;若f(-x)=-f(x)或f(-x)+f(x)=0,则f(x)是奇函数.

  (2)由f(-x)±f(x)=0或f(x)/f(-x)=±1来判定;

  (3)利用定理,或借助函数的图象判定.

  9、函数的解析表达式

  (1).函数的解析式是函数的一种表示方法,要求两个变量之间的函数关系时,一是要求出它们之间的对应法则,二是要求出函数的定义域.

  (2)求函数的解析式的主要方法有:

  1)凑配法

  2)待定系数法

  3)换元法

  4)消参法

  10.函数(小)值(定义见课本p36页)

  ○1利用二次函数的性质(配方法)求函数的(小)值

  ○2利用图象求函数的(小)值

  ○3利用函数单调性的判断函数的(小)值:

  如果函数y=f(x)在区间[a,b]上单调递增,在区间[b,c]上单调递减则函数y=f(x)在x=b处有值f(b);

  如果函数y=f(x)在区间[a,b]上单调递减,在区间[b,c]上单调递增则函数y=f(x)在x=b处有最小值f(b);

  例题:

  1.求下列函数的定义域:

  ⑴⑵

  2.设函数的定义域为,则函数的定义域为__

  3.若函数的定义域为,则函数的定义域是

  4.函数,若,则=

  6.已知函数,求函数,的解析式

  7.已知函数满足,则=。

  8.设是R上的奇函数,且当时,,则当时=

  在R上的解析式为

  9.求下列函数的单调区间:

  10.判断函数的单调性并证明你的结论.

  11.设函数判断它的奇偶性并且求证

数学必修一知识点总结9

  集合间的基本关系

  1.子集,A包含于B,记为:,有两种可能

  (1)A是B的一部分,(2)A与B是同一集合,A=B,A、B两集合中元素都相同。

  反之:集合A不包含于集合B,记作。

  如:集合A={1,2,3},B={1,2,3,4},C={1,2,3,4},三个集合的关系可以表示为,B=C。A是C的子集,同时A也是C的真子集。

  2.真子集:如果A?B,且A?B那就说集合A是集合B的真子集,记作AB(或BA)

  3、不含任何元素的集合叫做空集,记为Φ。Φ是任何集合的子集。

  4、有n个元素的集合,含有2n个子集,2n-1个真子集,含有2n-2个非空真子集。如A={1,2,3,4,5},则集合A有25=32个子集,25-1=31个真子集,25-2=30个非空真子集。

  例:集合共有个子集。(13年高考第4题,简单)

  练习:A={1,2,3},B={1,2,3,4},请问A集合有多少个子集,并写出子集,B集合有多少个非空真子集,并将其写出来。

  解析:

  集合A有3个元素,所以有23=8个子集。分别为:

  ①不含任何元素的子集Φ;

  ②含有1个元素的子集{1}{2}{3};

  ③含有两个元素的子集{1,2}{1,3}{2,3};

  ④含有三个元素的`子集{1,2,3}。

  集合B有4个元素,所以有24-2=14个非空真子集。具体的子集自己写出来。

  此处这么罗嗦主要是为了让同学们注意写的顺序,数学就是要讲究严谨性和逻辑性的。一定要养成自己的逻辑习惯。如果就是为了提高计算能力倒不如直接去菜场卖菜算了,绝对能飞速提高的,那学数学也没什么必要了。

数学必修一知识点总结10

  初等函数是由幂函数、指数函数、对数函数、三角函数、反三角函数与常数经过有限次的有理运算及有限次函数复合所产生,并且能用一个解析式表示的函数。非初等函数是指凡不是初等函数的函数。

  初等函数是最常用的一类函数,包括常函数、幂函数、指数函数、对数函数、三角函数、反三角函数(以上是基本初等函数),以及由这些函数经过有限次四则运算或函数的复合而得的所有函数。即基本初等函数经过有限次的四则运算或有限次的函数复合所构成并可以用一个解析式表出的`函数,称为初等函数。

  非初等函数的研究与发展是近现代数学的重大成就之一,极大拓展了数学在各个领域的应用,在概率论、物理学科各个分支中等有十分广泛的应用。是函数的一个重要的分支。一般说来,大部分分段函数不是初等函数。如符号函数,狄利克雷函数,gamma函数,误差函数,Weierstrass函数。但是个别分段函数除外。

  1、指数函数:函数y=ax (a>0且a≠1)叫做指数函数

  a的取值a>1 0

  定义域x∈R x∈R

  值域y∈(0,+∞) y∈(0,+∞)

  单调性全定义域单调递增全定义域单调递减

  奇偶性非奇非偶函数非奇非偶函数

  过定点(0,1) (0,1)

  注意:⑴由函数的单调性可以看出,在闭区间[a,b]上,指数函数的最值为:

  a>1时,最小值f(a),最大值f(b);0

  ⑵对于任意指数函数y=ax (a>0且a≠1),都有f(1)=a。

  2、对数函数:函数y=logax(a>0且a≠1)),叫做对数函数

  a的取值a>1 0

  定义域x∈(0,+∞) x∈(0,+∞)

  值域y∈R y∈R

  单调性全定义域单调递全定义域单调递减

  奇偶性非奇非偶函数非奇非偶函数

  过定点(1,0) (1,0)

  3、幂函数:函数y=xa(a∈R),高中阶段,幂函数只研究第I象限的情况。

  ⑴所有幂函数都在(0,+∞)区间内有定义,而且过定点(1,1)。

  ⑵a>0时,幂函数图像过原点,且在(0,+∞)区间为增函数,a越大,图像坡度越大。

  ⑶a<0时,幂函数在(0,+∞)区间为减函数。

  当x从右侧无限接近原点时,图像无限接近y轴正半轴;

  当y无限接近正无穷时,图像无限接近x轴正半轴。

  幂函数总图见下页。

  4、反函数:将原函数y=f(x)的x和y互换即得其反函数x=f-1(y)。

  反函数图像与原函数图像关于直线y=x对称。

  数学函数的奇偶性知识点

  1、函数的奇偶性的定义:对于函数f(x),如果对于函数定义域内的任意一个x,都有f(-x)=-f(x)(或f(-x)=f(x)),那么函数f(x)就叫做奇函数(或偶函数).

  正确理解奇函数和偶函数的定义,要注意两点:(1)定义域在数轴上关于原点对称是函数f(x)为奇函数或偶函数的必要不充分条件;(2)f(x)=-f(x)或f(-x)=f(x)是定义域上的恒等式.(奇偶性是函数定义域上的整体性质).

  2、奇偶函数的定义是判断函数奇偶性的主要依据。为了便于判断函数的奇偶性,有时需要将函数化简或应用定义的等价形式。

  学数学的用处

  第一,实际生活中数学学得好可以帮助你在工作上解决工程类或财务类的技术问题。就大多数情况来看,不能解决技术问题的人不仅收入较差而且还要到基层去从事低等体力劳动,能解决技术问题的人就可以拿高工资在办公室当工程师或者财务人员。

  第二,数学可以使你的大脑变得更加聪明,增加你思维的严谨性,另外,数学对你其它科目的学习也有很大作用。

  第三,数学无处不在,工作学习中都用得着,例如日常逛街买东西都是和数学有关的,这时候才能体会到学习数学的好处。

数学必修一知识点总结11

  空间两条直线只有三种位置关系:平行、相交、异面

  1、按是否共面可分为两类:

  1共面:平行、相交

  2异面:

  异面直线的定义:不同在任何一个平面内的两条直线或既不平行也不相交。

  异面直线判定定理:用平面内一点与平面外一点的直线,与平面内不经过该点的直线是异面直线。

  两异面直线所成的角:范围为0°,90°esp.空间向量法

  两异面直线间距离:公垂线段有且只有一条esp.空间向量法

  2、若从有无公共点的角度看可分为两类:

  1有且仅有一个公共点——相交直线;2没有公共点——平行或异面

  直线和平面的位置关系:

  直线和平面只有三种位置关系:在平面内、与平面相交、与平面平行

  ①直线在平面内——有无数个公共点

  ②直线和平面相交——有且只有一个公共点

  直线与平面所成的角:平面的一条斜线和它在这个平面内的射影所成的锐角。

  空间向量法找平面的法向量

  规定:a、直线与平面垂直时,所成的角为直角,b、直线与平面平行或在平面内,所成的角为0°角

  由此得直线和平面所成角的取值范围为[0°,90°]

  最小角定理:斜线与平面所成的角是斜线与该平面内任一条直线所成角中的最小角

  三垂线定理及逆定理:如果平面内的一条直线,与这个平面的一条斜线的射影垂直,那么它也与这条斜线垂直

  直线和平面垂直

  直线和平面垂直的'定义:如果一条直线a和一个平面内的任意一条直线都垂直,我们就说直线a和平面互相垂直.直线a叫做平面的垂线,平面叫做直线a的垂面。

  直线与平面垂直的判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面。

  直线与平面垂直的性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行。③直线和平面平行——没有公共点

  直线和平面平行的定义:如果一条直线和一个平面没有公共点,那么我们就说这条直线和这个平面平行。

  直线和平面平行的判定定理:如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行。

  直线和平面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。

  多面体

  1、棱柱

  棱柱的定义:有两个面互相平行,其余各面都是四边形,并且每两个四边形的公共边都互相平行,这些面围成的几何体叫做棱柱。

  棱柱的性质

  1侧棱都相等,侧面是平行四边形

  2两个底面与平行于底面的截面是全等的多边形

  3过不相邻的两条侧棱的截面对角面是平行四边形

  2、棱锥

  棱锥的定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,这些面围成的几何体叫做棱锥

  棱锥的性质:

  1侧棱交于一点。侧面都是三角形

  2平行于底面的截面与底面是相似的多边形。且其面积比等于截得的棱锥的高与远棱锥高的比的平方

  3、正棱锥

  正棱锥的定义:如果一个棱锥底面是正多边形,并且顶点在底面内的射影是底面的中心,这样的棱锥叫做正棱锥。

  正棱锥的性质:

  1各侧棱交于一点且相等,各侧面都是全等的等腰三角形。各等腰三角形底边上的高相等,它叫做正棱锥的斜高。

  3多个特殊的直角三角形

  a、相邻两侧棱互相垂直的正三棱锥,由三垂线定理可得顶点在底面的射影为底面三角形的垂心。

  b、四面体中有三对异面直线,若有两对互相垂直,则可得第三对也互相垂直。且顶点在底面的射影为底面三角形的垂心。

  两个平面的位置关系

  1两个平面互相平行的定义:空间两平面没有公共点

  2两个平面的位置关系:

  两个平面平行-----没有公共点;两个平面相交-----有一条公共直线。

  a、平行

  两个平面平行的判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行。

  两个平面平行的性质定理:如果两个平行平面同时和第三个平面相交,那么交线平行。b、相交

  二面角

  1半平面:平面内的一条直线把这个平面分成两个部分,其中每一个部分叫做半平面。

  2二面角:从一条直线出发的两个半平面所组成的图形叫做二面角。二面角的取值范围为[0°,180°]

  3二面角的棱:这一条直线叫做二面角的棱。

  4二面角的面:这两个半平面叫做二面角的面。

  5二面角的平面角:以二面角的棱上任意一点为端点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫做二面角的平面角。

  6直二面角:平面角是直角的二面角叫做直二面角。

  两平面垂直

  两平面垂直的定义:两平面相交,如果所成的角是直二面角,就说这两个平面互相垂直。记为⊥

  两平面垂直的判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直

  两个平面垂直的性质定理:如果两个平面互相垂直,那么在一个平

  二面角求法:直接法作出平面角、三垂线定理及逆定理、面积射影定理、空间向量之法向量法注意求出的角与所需要求的角之间的等补关系。

数学必修一知识点总结12

  高一数学必修一知识点

  指数函数

  (一)指数与指数幂的运算

  1.根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中>1,且∈_.

  当是奇数时,正数的次方根是一个正数,负数的次方根是一个负数.此时,的次方根用符号表示.式子叫做根式(radical),这里叫做根指数(radicalexponent),叫做被开方数(radicand).

  当是偶数时,正数的次方根有两个,这两个数互为相反数.此时,正数的正的次方根用符号表示,负的次方根用符号-表示.正的次方根与负的次方根可以合并成±(>0).由此可得:负数没有偶次方根;0的任何次方根都是0,记作。

  注意:当是奇数时,当是偶数时,

  2.分数指数幂

  正数的分数指数幂的意义,规定:

  0的正分数指数幂等于0,0的负分数指数幂没有意义

  指出:规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数,那么整数指数幂的运算性质也同样可以推广到有理数指数幂.

  3.实数指数幂的运算性质

  (二)指数函数及其性质

  1、指数函数的概念:一般地,函数叫做指数函数(exponential),其中x是自变量,函数的定义域为R.

  注意:指数函数的底数的取值范围,底数不能是负数、零和1.

  2、指数函数的图象和性质

  高一上册数学必修一知识点梳理

  空间几何体表面积体积公式:

  1、圆柱体:表面积:2πRr+2πRh体积:πR2h(R为圆柱体上下底圆半径,h为圆柱体高)

  2、圆锥体:表面积:πR2+πR[(h2+R2)的]体积:πR2h/3(r为圆锥体低圆半径,h为其高,

  3、a-边长,S=6a2,V=a3

  4、长方体a-长,b-宽,c-高S=2(ab+ac+bc)V=abc

  5、棱柱S-h-高V=Sh

  6、棱锥S-h-高V=Sh/3

  7、S1和S2-上、下h-高V=h[S1+S2+(S1S2)^1/2]/3

  8、S1-上底面积,S2-下底面积,S0-中h-高,V=h(S1+S2+4S0)/6

  9、圆柱r-底半径,h-高,C—底面周长S底—底面积,S侧—,S表—表面积C=2πrS底=πr2,S侧=Ch,S表=Ch+2S底,V=S底h=πr2h

  10、空心圆柱R-外圆半径,r-内圆半径h-高V=πh(R^2-r^2)

  11、r-底半径h-高V=πr^2h/3

  12、r-上底半径,R-下底半径,h-高V=πh(R2+Rr+r2)/313、球r-半径d-直径V=4/3πr^3=πd^3/6

  14、球缺h-球缺高,r-球半径,a-球缺底半径V=πh(3a2+h2)/6=πh2(3r-h)/3

  15、球台r1和r2-球台上、下底半径h-高V=πh[3(r12+r22)+h2]/6

  16、圆环体R-环体半径D-环体直径r-环体截面半径d-环体截面直径V=2π2Rr2=π2Dd2/4

  17、桶状体D-桶腹直径d-桶底直径h-桶高V=πh(2D2+d2)/12,(母线是圆弧形,圆心是桶的中心)V=πh(2D2+Dd+3d2/4)/15(母线是抛物线形)

  人教版高一数学必修一知识点梳理

  1、柱、锥、台、球的结构特征

  (1)棱柱:

  定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。

  分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。

  表示:用各顶点字母,如五棱柱或用对角线的端点字母,如五棱柱。

  几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。

  (2)棱锥

  定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体。

  分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等

  表示:用各顶点字母,如五棱锥

  几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。

  (3)棱台:

  定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分。

  分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等

  表示:用各顶点字母,如五棱台

  几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的.顶点

  (4)圆柱:

  定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体。

  几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。

  (5)圆锥:

  定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体。

  几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。

  (6)圆台:

  定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分

  几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。

  (7)球体:

  定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体

  几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径。

  2、空间几何体的三视图

  定义三视图:正视图(光线从几何体的前面向后面正投影);侧视图(从左向右)、俯视图(从上向下)

  注:正视图反映了物体上下、左右的位置关系,即反映了物体的高度和长度;

  俯视图反映了物体左右、前后的位置关系,即反映了物体的长度和宽度;

  侧视图反映了物体上下、前后的位置关系,即反映了物体的高度和宽度。

  3、空间几何体的直观图——斜二测画法

  斜二测画法特点:

  ①原来与x轴平行的线段仍然与x平行且长度不变;

  ②原来与y轴平行的线段仍然与y平行,长度为原来的一半。

数学必修一知识点总结13

  二次函数

  I.定义与定义表达式

  一般地,自变量x和因变量y之间存在如下关系:y=ax^2+bx+c

  (a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下,IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大.)

  则称y为x的二次函数。

  二次函数表达式的右边通常为二次三项式。

  II.二次函数的三种表达式

  一般式:y=ax^2+bx+c(a,b,c为常数,a≠0)

  顶点式:y=a(x-h)^2+k[抛物线的顶点P(h,k)]

  交点式:y=a(x-x?)(x-x?)[仅限于与x轴有交点A(x?,0)和B(x?,0)的'抛物线]

  注:在3种形式的互相转化中,有如下关系:

  h=-b/2ak=(4ac-b^2)/4ax?,x?=(-b±√b^2-4ac)/2a

  III.二次函数的图像

  在平面直角坐标系中作出二次函数y=x^2的图像,可以看出,二次函数的图像是一条抛物线。

  IV.抛物线的性质

  1.抛物线是轴对称图形。对称轴为直线x=-b/2a。对称轴与抛物线的交点为抛物线的顶点P。

  特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)

  2.抛物线有一个顶点P,坐标为

  P(-b/2a,(4ac-b^2)/4a)

  当-b/2a=0时,P在y轴上;当Δ=b^2-4ac=0时,P在x轴上。

  3.二次项系数a决定抛物线的开口方向和大小。

  当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。

  |a|越大,则抛物线的开口越小。

数学必修一知识点总结14

  空间中直线与平面、平面与平面之间的位置关系

  1、直线与平面有三种位置关系:

  (1)直线在平面内——有无数个公共点

  (2)直线与平面相交——有且只有一个公共点

  (3)直线在平面平行——没有公共点

  指出:直线与平面相交或平行的情况统称为直线在平面外,可用aα来表示aαa∩α=Aa∥α

  2、直线、平面平行的判定及其性质

  (1)直线与平面平行的判定

  (2)直线与平面平行的判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。

  简记为:线线平行,则线面平行。

  集合的分类

  (1)按元素属性分类,如点集,数集。

  (2)按元素的个数多少,分为有/无限集

  关于集合的概念:

  (1)确定性:作为一个集合的元素,必须是确定的,这就是说,不能确定的对象就不能构成集合,也就是说,给定一个集合,任何一个对象是不是这个集合的元素也就确定了。

  (2)互异性:对于一个给定的集合,集合中的元素一定是不同的(或说是互异的),这就是说,集合中的任何两个元素都是不同的对象,相同的对象归入同一个集合时只能算作集合的一个元素。

  (3)无序性:判断一些对象时候构成集合,关键在于看这些对象是否有明确的标准。

  集合可以根据它含有的元素的.个数分为两类:

  含有有限个元素的集合叫做有限集,含有无限个元素的集合叫做无限集。

  非负整数全体构成的集合,叫做自然数集,记作N;

  在自然数集内排除0的集合叫做正整数集,记作N+或N—;

  整数全体构成的集合,叫做整数集,记作Z;

  有理数全体构成的集合,叫做有理数集,记作Q;(有理数是整数和分数的统称,一切有理数都可以化成分数的形式。)

  实数全体构成的集合,叫做实数集,记作R。(包括有理数和无理数。其中无理数就是无限不循环小数,有理数就包括整数和分数。数学上,实数直观地定义为和数轴上的点一一对应的数。)

数学必修一知识点总结15

  集合的运算

  运算类型交 集并 集补 集

  定义域 R定义域 R

  值域>0值域>0

  在R上单调递增在R上单调递减

  非奇非偶函数非奇非偶函数

  函数图象都过定点(0,1)函数图象都过定点(0,1)

  注意:利用函数的单调性,结合图象还可以看出:

  (1)在[a,b]上, 值域是 或 ;

  (2)若 ,则 ; 取遍所有正数当且仅当 ;

  (3)对于指数函数 ,总有 ;

  二、对数函数

  (一)对数

  1.对数的概念:

  一般地,如果 ,那么数 叫做以 为底 的对数,记作: ( — 底数, — 真数, — 对数式)

  说明:○1 注意底数的限制 ,且 ;

  ○2 ;

  ○3 注意对数的书写格式.

  两个重要对数:

  ○1 常用对数:以10为底的对数 ;

  ○2 自然对数:以无理数 为底的对数的对数 .

  指数式与对数式的互化

  幂值 真数

  = N = b

  底数

  指数 对数

  (二)对数的运算性质

  如果 ,且 , , ,那么:

  ○1 + ;

  ○2 - ;

  ○3 .

  注意:换底公式: ( ,且 ; ,且 ; ).

  利用换底公式推导下面的结论:(1) ;(2) .

  (3)、重要的公式 ①、负数与零没有对数; ②、 , ③、对数恒等式

  (二)对数函数

  1、对数函数的概念:函数 ,且 叫做对数函数,其中 是自变量,函数的定义域是(0,+∞).

  注意:○1 对数函数的定义与指数函数类似,都是形式定义,注意辨别。如: , 都不是对数函数,而只能称其为对数型函数.

  ○2 对数函数对底数的限制: ,且 .

  2、对数函数的性质:

  a>10

  定义域x>0定义域x>0

  值域为R值域为R

  在R上递增在R上递减

  函数图象都过定点(1,0)函数图象都过定点(1,0)

  (三)幂函数

  1、幂函数定义:一般地,形如 的函数称为幂函数,其中 为常数.

  2、幂函数性质归纳.

  (1)所有的幂函数在(0,+∞)都有定义并且图象都过点(1,1);

  (2) 时,幂函数的图象通过原点,并且在区间 上是增函数.特别地,当 时,幂函数的图象下凸;当 时,幂函数的图象上凸;

  (3) 时,幂函数的图象在区间 上是减函数.在第一象限内,当 从右边趋向原点时,图象在 轴右方无限地逼近 轴正半轴,当 趋于 时,图象在 轴上方无限地逼近 轴正半轴.

  第四章 函数的应用

  一、方程的根与函数的零点

  1、函数零点的概念:对于函数 ,把使 成立的实数 叫做函数 的零点。

  2、函数零点的意义:函数 的零点就是方程 实数根,亦即函数 的图象与 轴交点的横坐标。

  即:方程 有实数根 函数 的图象与 轴有交点 函数 有零点.

  3、函数零点的`求法:

  ○1 (代数法)求方程 的实数根;

  ○2 (几何法)对于不能用求根公式的方程,可以将它与函数 的图象联系起来,并利用函数的性质找出零点.

  4、二次函数的零点:

  二次函数 .

  (1)△>0,方程 有两不等实根,二次函数的图象与 轴有两个交点,二次函数有两个零点.

  (2)△=0,方程 有两相等实根,二次函数的图象与 轴有一个交点,二次函数有一个二重零点或二阶零点.

  (3)△<0,方程 无实根,二次函数的图象与 轴无交点,二次函数无零点.

  5.函数的模型

【数学必修一知识点总结】相关文章:

高一数学必修一知识点总结05-19

人教版高一数学必修一知识点总结09-02

高一数学必修二知识点总结09-02

必修5数学知识点总结02-04

高一数学必修二知识点归纳总结10-18

[推荐]高一数学必修二知识点总结10-26

必修一化学知识点总结05-27

(热门)高一数学必修一知识点总结15篇09-02

高一政治必修一知识点总结06-28

Copyright©2003-2024gushici.weiyujianbao.cn版权所有