当前位置:贤学网>范文>说课稿> 高中数学说课稿

高中数学说课稿

时间:2024-07-17 08:14:01 说课稿 我要投稿

高中数学说课稿

  作为一名优秀的教育工作者,时常需要用到说课稿,认真拟定说课稿,如何把说课稿做到重点突出呢?以下是小编帮大家整理的高中数学说课稿,希望能够帮助到大家。

高中数学说课稿

高中数学说课稿1

  尊敬的各位考官,大家好,我是今天的X号考生,今天我说课的题目是《向量减法运算及其几何意义》。

  下面开始我的说课。

  一、说教材

  首先谈谈我对教材的理解。《向量减法运算及其几何意义》是人教A版实验版高中数学必修4的内容。本节课主要学习向量减法运算的定义及几何意义。本节课的学习建立在学生已经掌握平面向量的基本概念以及向量加法运算的基础之上。向量减法的.学习是运算认识的一次飞跃,本节课的知识在整个章节中也起到了承上启下的重要作用。

  二、说学情

  接下来谈谈学生的实际情况。新课标指出学生是教学的主体,所以要成为符合新课标要求的教师,深入了解所面对的学生可以说是必修课。这一阶段的学生思维较为活跃,求知欲也较强,但是未形成良好的思维习惯。

  三、说教学目标

  根据以上对教材的分析以及对学情的把握,我制定了如下三维教学目标:

  (一)知识与技能

  借助向量加法运算及相反向量的概念,理解向量减法运算的定义和几何意义。

  (二)过程与方法

  通过将向量减法运算转化为向量加法运算的计算过程,体会向量加、减法的内在联系,渗透转化的数学思想。

  (三)情感、态度与价值观

  在探究向量减法运算定义及几何意义的过程中,养成良好的学习习惯和严谨的思维方式。

  四、说教学重难点

  根据授课内容可以确定本节课的教学重点是向量减法运算的定义及几何意义,教学难点是向量减法几何意义的理解。

  五、说教法和学法

  结合本节课的内容特点和学生的年龄特征,本节课我采用讲授法、练习法的教法,观察、分析、归纳概括探索知识的学法来进行教学。

  六、说教学过程

  下面我将重点谈谈我对教学过程的设计。

  (一)导入新课

  首先是导入环节。先回忆上节课学习的向量加法运算法则,再回忆实数运算中,减去一个数相当于什么?通过提问:向量的减法是否也有类似的法则?引出本节课的内容《向量减法运算及其几何意义》。

  通过相关概念的复习和向量加法运算法则的巩固,为后续向量减法运算的教学奠定理论基础。

高中数学说课稿2

尊敬的各位考官:

  大家好!

  我是今天的x号考生,今天我说课的题目是《直线与平面平行的判定》。

  高中数学课程以学生发展为本,提升数学学科核心素养。这节课我将秉承这一教学理念,从教材分析、教学目标、教学过程等几个方面来展开我的说课。

  一、说教材

  本节课选自人教A版高中数学必修2第二章第2节。此前学生对空间立体几何已经有了一定的感知。通过本节课的学习,能使学生进一步了解空间中直线与平面平行关系的判定方法,培养学生的逻辑思维和空间想象能力。

  二、说学情

  学生已经学习了空间中点、直线、平面间的位置关系,知道若直线与平面平行,则没有公共点,但直接利用定义无法进行判断。因而我会注意在教学时逐步引导学生,在辩证思考中探索直线与平面平行的条件。

  三、说教学目标

  根据以上对教材的分析和对学情的把握,我设置本节课的教学目标如下:

  (一)知识与技能

  掌握直线与平面平行的判定定理,会用文字语言、符号语言和图形语言描述判定定理,并会进行简单应用。

  (二)过程与方法

  通过直观感知、观察、操作确认的认知过程,培养空间想象力和逻辑思维能力,体会“降维”的`思想。

  (三)情感、态度与价值观

  通过生活中的实例,体会平行关系在生活中的广泛应用;在探究线面平行判定定理的过程中,形成学习数学的积极态度。

  四、说教学重难点

  根据学生现有的知识储备和知识本身的难易程度,我设置本节课教学重点为:直线与平面平行的判定定理。教学难点为:直线与平面平行的判定定理的探究。

  五、说教法和学法

  为达成教学目标,突破教学重难点,本节课我将采用讲授法、自主探究法、练习法等教学方法,以达到教与学的和谐完美统一。

  六、说教学过程

  下面我将重点谈谈我的教学过程。

  (一)引入新课

  导入环节我会带领学生从文字语言、图形语言和符号语言这三个角度复习直线与平面有哪些位置关系。接着我会请学生思考,该如何判定直线与平面平行。根据定义,只需判定直线与平面没有公共点即可。但直线无限伸长,平面无限延展,如何保证直线与平面无公共点。由此引发认知冲突,引入本节课的学习。

  通过复习导入,不仅巩固了之前所学,建立起新旧知识之间的联系,而且能够有效激发起学生的学习兴趣,从而为下面的学习打好基础。

  (二)讲解新知

  接下来是新知讲解环节。

  我会请学生观察,教室门扇的两边是平行的,当门扇绕着一边转动时,观察门扇转动的一边和门框所在平面有怎样的位置关系。并组织学生动手操作,将书本平放在桌面上,翻动书的封面,封面边缘所在直线与桌面所在平面具有什么样的位置关系。

  学生不难看出其中的平行关系。在此基础上,我会请学生同桌两人交流讨论,如果直线与平面平行,则这条直线与平面内多少条直线平行。如果这条直线平行于平面内的无数条直线,那么这条直线是否一定与这个平面平行。

  (三)课堂练习

  除了知道知识,学生还要能对知识进行应用。我会出示以下练习题:求证空间四边形相邻两边中点的连线平行于另外两边所在的平面。结合这一练习题,我会进一步强调,线面平行问题可转化为线线平行问题。这也为之后线面、面面关系的学习奠定基础。

  (四)小结作业

  课堂小结部分,我会充分发挥学生的主体性,请学生说一说本节课的收获。收获不仅仅只是知识方面,也可以说一说这节课学到的思想方法等,进一步培养学生的综合素质。

  课后作业我会请学生完成书上相应练习题,使学生在课后也能得到思考,夯实学生对于新知的掌握。

  七、说板书设计

  我的板书设计遵循简洁明了、突出重点的原则,以下是我的板书设计:

  略。

高中数学说课稿3

  一、教材分析

  1.本节课内容在整个教材中的地位和作用

  概括地讲,二次函数的图像在教材中起着承上启下的作用,它的地位体现在它的思想的基础性。一方面,本节课是对初中有关内容的深化,为后面进一步学习二次函数的性质打下基础;另一方面,二次函数解析式中的系数由常数转变为参数,使学生对二次函数的图像由感性认识上升到理性认识,能培养学生利用数形结合思想解决问题的能力。

  2.教学目标定位

  根据教学大纲要求、新课程标准精神,我确定了三个层面的教学目标。

  (1)基础知识与能力目标:理解二次函数的图像中a、b、c、k、h的作用,能熟练地对二次函数的一般式进行配方,会对图像进行平移变换,领会研究二次函数图像的方法,培养学生运用数形结合与等价转化等数学思想方法解决问题的能力,提高运算和作图能力;

  (2)过程和方法:让学生经历作图、观察、比较、归纳的学习过程,使学生掌握类比、化归等数学思想方法,养成即能自主探索,又能合作探究的良好学习习惯;

  (3)情感、态度和价值观:在教学中渗透美的教育,渗透数形结合的思想,让学生在数学活动中学会与人相处,感受探索与创造,体验成功的喜悦。

  3.教学重难点

  重点是二次函数各系数对图像和形状的影响,利用二次函数图像平移的特例分析过程,培养学生数形结合的思想和划归思想。难点是图像的`平移变换,关键是二次函数顶点式中h、k的正负取值对函数图像平移变换的影响。

  二、教法学法分析

  数学是发展学生思维、培养学生良好意志品质和美好情感的重要学科,在教学中,我们不仅要使学生获得知识、提高解题能力,还要让学生在教师的启发引导下学会学习、乐于学习,感受数学学科的人文思想,感受数学的自然美。为了更好地体现在课堂教学中"教师为主导,学生为主体"的教学关系和"以人为本,以学定教"的教学理念,在本节课的教学过程中,我将紧紧围绕教师组织——启发引导,学生探究——交流发现,组织开展教学活动。

  为此,我设计了5个环节:

  ①创设情景——引入新课;

  ②交流探究——发现规律;

  ③启发引导——形成结论;

  ④训练小结——深化巩固;

  ⑤思维拓展——提高能力。这五个环节环环相扣、层层深入,注重关注整个过程和全体学生,充分调动了学生的参与性。

  三、教学过程分析

  1.创设情景—引入新课

  教学应充分考虑学生的情感和需要,想方设法让学生在学习中树立信心,感受学习乐趣。根据教材内容,我首先出示一道题目,以需要画y=2x?图像为引子,让学生画y=x?和y=2x?图像,进而比较这两个图像的相同点和不同点为背景切入,一方面让学生总结复习已有知识,为后面的学习做好铺垫,另一方面,使学生在自己熟悉的问题中首先获得解题成功的快乐体验,最后引导学生总结出函数y=x?与y=ax?图像的关系,得出本节课的第一个知识点,即二次项系数a决定图像的开口方向和开口大小。

  由浅入深,下面让学生画y=2x,y=2(x+1)与y=2(x+1)+3的图像并寻找它们的联系,再让学生与多媒体课件展示出的图像进行对比,最后总结出图像的变换规律:a决定开口方向、h决定左右平移、k决定上下平移。由于二次函数的重要性,本节课我以考题为背景引入新课,可以提高学生的学习兴趣,吸引学生的课堂注意力,可以让学生实实在在感受到高考题就在我们的课本中,就在我们平常的练习中。

  2.探究交流—发现规律

  从特别到一般是我们发现问题、寻求规律、揭示本质最常用的方法之一。让学生做出y=2x与y=2x+4x-1的图像,再与课件上的图像对比并叙述二者之间的位置关系,得出结论:若二次函数的解析式为y=ax+bx+c,先将其化成y=a(x+h)+k的形式,从而判断出y=ax+bx+c的图像是如何由y=ax变换得到的。在课本第42页例1(1)中要提醒学生注意,在含有参数的解析式y=a(x+h)+k中,顶点坐标应是(-h,k),而不是(h,k)。所以,例1(1)中二次函数f(x)顶点的横坐标是4,即-h=4,h=-4,括号里面就是x-4(这里容易出错)。例1(2)中h、k的值是已知的,只需要确定a的值就可以了。

  3.启发引导—形成结论

  前面的练习和例题,基本涵盖了二次函数图像平移变换的各种情况,启发并引导了学生将实例的结论进行总结,得出y=x到y=ax,y=ax到y=a(x+h)+k,y=ax到y=ax+bx+c(其中,a均不为0)的图像变化过程,即a>0开口向上,a<0开口向下;h正左移,h负右移;k正上移,k负下移。

  4.练习小结——巩固深化

  为了巩固和加深二次函数y=ax?+bx+c中的a.b.c对图像的影响,接下来组织学生进行课题练习,完成课本44页练习1—3题。上课时间有限,为保证在完成教学任务的前提下,让学生充分练习和讨论,我一直坚持让学生规范使用演草本。课堂上需要学生动手演练的地方不急于安排学生马上讨论,而是让学生思考后将自己的答案整齐地写在演草本上,然后小组内四人相互交换进行量分,因为是在课堂上,量分标准要简单,我要求用30分的整分制。用时较短10分,书写整齐规范10分,解答正确10分。

  这个过程中会产生学生之间的三次竞争:

  ①看谁解的快、用时最短;

  ②看谁书写的整齐;

  ③看谁做的对。

  这个自己做和批阅的过程,也是学生对题目加深理解的过程。量完分后组织学生对不同解法进行探究,这又会产生学生之间的第四次竞争,看谁的方法简便,思维更严密。当然做题时有的学生会做的很快,可以让他们判断黑板上演示学生的解题得分情况,这也促进在黑板上演示的学生同下面学生之间的竞争。

  这个充满竞争的过程其实也是教师通过演草本无形引导学生解决问题、收获新知的过程,也是一个培养学生探究精神和思考、比较、辨别能力的过程,使学生成为学习上的主人。这样每节课都有竞争,能使学生发现自己在学习的长处,增强了自己的自信心,切实感受到了学习的乐趣,课堂才能真正的活起来。考试中,成绩必然会逐步提高,能避免现在我们教学中学生"考试什么都不会,考完后什么都会"以及阅卷中发现的学生书写凌乱的通病,经过长期这样的练习,每个学生练就了快思考、求准确、写整齐的能力。

  5.延伸拓广——提高能力

  课堂教学既要面对全体学生,又应关注学生的个体差异,体现分类推进,分层教学原则。为此,我设计了一个提高练习题组,共两道被选题目,以供学有余力的学生能够更好的展示自己的解题能力,取得进一步提高。

高中数学说课稿4

  一、教学背景分析

  (一)教材地位分析:《椭圆及其标准方程》是继学习圆以后运用“曲线与方程”思想解决二次曲线问题的又一实例,从知识上说,本节课是对坐标法研究几何问题的又一次实际运用,同时也是进一步研究椭圆几何性质的基础;从方法上说,它为进一步研究双曲线、抛物线提供了基本模式和理论基础,因此本节课起到了承上启下的重要作用、

  (二)重点、难点分析:本节课的重点是椭圆的定义及其标准方程,标准方程的推导是本节课的难点,要突破这一难点,关键是引导学生正确选择去根式的策略、

  (三)学情分析:在学习本节课前,学生已经学习了直线与圆的方程,对曲线和方程的思想方法有了一些了解和运用的经验,对坐标法研究几何问题也有了初步的认识,因此,学生已经具备探究有关点的轨迹问题的知识基础和学习能力,但由于学生学习解析几何还不长、学习程度也较浅,并且还受到这一年龄段学习心理和认知结构的影响,在学习过程中难免会有些困难、如:由于学生对运用坐标法解决几何问题掌握还不够,因此从研究圆到椭圆,学生思维上会存在障碍、

  二、教学目标设计

  (一)知识目标:掌握椭圆的定义及其标准方程;会根据条件写出椭圆的标准方程;通过对椭圆标准方程的探求,再次熟悉求曲线方程的一般方法、

  (二)能力目标:学生通过动手画椭圆、分组讨论探究椭圆定义、推导椭圆标准方程等过程,提高动手能力、学习能力和运用知识解决实际问题的能力、

  (三)情感目标:在形成知识、提高能力的过程中,激发学生学习数学的兴趣,提高学生的审美情趣,培养学生勇于探索、敢于创新的、

  三、教法学法设计

  (一)教学方法设计:为了更好地培养学生自主学习能力,提高学生的综合素质,我主要采用探究式教学方法、一方面我通过设置情境、问题诱导充分发挥主导作用;另一方面学生通过对我提供的素材进行直观观察→动手操作→讨论探究→归纳抽象→总结规律的过程充分体现主体地位、

  使用多媒体辅助教学与自制教具相结合的设计,实现多媒体快捷、形象、大容量的优势与自制教具直观、的优势的结合,既突出了知识的产生过程,又增加了课堂的趣味性、

  1、掌握椭圆的定义,掌握椭圆标准方程的两种形式及其推导过程;

  2、能根据条件确定椭圆的标准方程,掌握运用待定系数法求椭圆的标准方程;

  3、通过对椭圆概念的引入教学,培养学生的观察能力和探索能力;

  4、通过椭圆的标准方程的推导,使学生进一步掌握求曲线方程的一般方法,并渗透数形结合和等价转化的思想方法,提高运用坐标法解决几何问题的能力;

  5、通过让学生大胆探索椭圆的定义和标准方程,激发学生学习数学的积极性,培养学生的学习兴趣和创新意识、

  四、教学建议

  教材分析

  1、知识结构

  2、重点难点分析

  重点是椭圆的定义及椭圆标准方程的两种形式、难点是椭圆标准方程的建立和推导、关键是掌握建立坐标系与根式化简的方法。

  椭圆及其标准方程这一节教材整体来看是两大块内容:一是椭圆的定义;二是椭圆的标准方程、椭圆是圆锥曲线这一章所要研究的三种圆锥曲线中首先遇到的,所以教材把对椭圆的研究放在了重点,在双曲线和抛物线的教学中巩固和应用、先讲椭圆也与第七章的圆的'方程衔接自然、学好椭圆对于学生学好圆锥曲线是非常重要的。

  (1)对于椭圆的定义的理解,要抓住椭圆上的点所要满足的条件,即椭圆上点的几何性质,可以对比圆的定义来理解、

  另外要注意到定义中对“常数”的限定即常数要大于、这样规定是为了避免出现两种特殊情况,即:“当常数等于时轨迹是一条线段;当常数小于时无轨迹”。这样有利于集中精力进一步研究椭圆的标准方程和几何性质、但讲解椭圆的定义时注意不要忽略这两种特殊情况,以保证对椭圆定义的准确性。

  (2)根据椭圆的定义求标准方程,应注意下面几点:

  ①曲线的方程依赖于坐标系,建立适当的坐标系,是求曲线方程首先应该注意的地方、应让学生观察椭圆的图形或根据椭圆的定义进行推理,发现椭圆有两条互相垂直的对称轴,以这两条对称轴作为坐标系的两轴,不但可以使方程的推导过程变得,而且也可以使最终得出的方程形式整齐和简洁。

  ②设椭圆的焦距为,椭圆上任一点到两个焦点的距离为,令,这些措施,都是为了简化推导过程和最后得到的方程形式整齐、简洁,要让学生认真领会、

  ③在方程的推导过程中遇到了无理方程的化简,这既是我们今后在求轨迹方程时经常遇到的问题,又是学生的难点、要注意说明这类方程的化简方法:①方程中只有一个根式时,需将它单独留在方程的一侧,把其他项移至另一侧;②方程中有两个根式时,需将它们分别放在方程的两侧,并使其中一侧只有一项、

  ④教科书上对椭圆标准方程的推导,实际上只给出了“椭圆上点的坐标都适合方程“而没有证明,”方程的解为坐标的点都在椭圆上”、这实际上是方程的同解变形问题,难度较大,对同学们不作要求。

  (3)两种标准方程的椭圆异同点

  中心在原点、焦点分别在轴上,轴上的椭圆标准方程分别为:它们的相同点是:形状相同、大小相同,都有,、不同点是:两种椭圆相对于坐标系的位置不同,它们的焦点坐标也不同、椭圆的焦点在轴上标准方程中项的分母较大;椭圆的焦点在轴上标准方程中项的分母较大、另外,形如中,只要,同号,就是椭圆方程,它可以化为。

  (4)教科书上通过例3介绍了另一种求轨迹方程的常用方法——中间变量法、例3有三个作用:是教给学生利用中间变量求点的轨迹的方法;第二是向学生说明,如果求得的点的轨迹的方程形式与椭圆的标准方程相同,那么这个轨迹是椭圆;第三是使学生知道,一个圆按某一个方向作伸缩变换可以得到椭圆。

高中数学说课稿5

  尊敬的各位专家、评委:

  上午好!

  今天我说课的课题是人教A版必修2第二章第二节《直线与圆的位置关系》。

  我尝试利用新课标的理念来指导教学,对于本节课,我将以“教什么,怎么教,为什么这样教”为思路,从教材分析、目标分析、教法学法分析、教学过程分析和评价分析五个方面来谈谈我对教材的理解和教学的设计,敬请各位专家、评委批评指正。

  一、教材分析

  地位和作用

  学生在初中的学习中已经了解直线与圆的位置关系,并知道可以利用直线与圆的焦点的个数以及圆心与直线的距离d与半径r的关系判断直线与圆的位置关系。但是,在初中学习时,利用圆心与直线的距离d与半径r的关系判断直线与圆的位置关系的方法却以结论性的形式呈现。在高一学习了解析几何后,要考虑的问题是如何掌握由直线和圆的方程判断直线与圆的位置关系的方法。解决问题的方法主要是几何法和代数法。其中几何法应该是在初中学习的基础上,结合高中所学的点到直线的距离公式求出圆心与直线的距离d后,比较与半径r的关系。从而作出判断,适可而止第引进用联立方程组转化为二次方程判别根的“纯代数判别法”,并与“几何法”欣赏比较,以决优劣,从而也深化了基本的“几何法”。含参数的问题、简单的弦的问题、切线问题等综合问题作为进一步的拓展提高或综合应用,也适度第引入课堂教学中,但以深化“判定直线与圆的位置关系”为目的,要控制难度。虽然学生学习解析几何了,但是把几何问题代数化无论是思维习惯还是具体转化方法,学生仍是似懂非懂,因此应不断强化,逐渐内化为学生的习惯和基本素质。

  二、目标分析

  (一)、教学目标

  1、知识与技能

  理解直线与圆的位置的种类;

  利用平面直角坐标系中点到直线的距离公式求圆心到直线的距离;

  会用点到直线的距离来判断直线与圆的位置关系。

  2、过程与方法

  设直线L:ax+by+c=o,圆C:x2+y2+Dx+Ey+F=0,圆的半径为r,圆心(- ,- )到直线的距离为d,则判别直线与圆的位置关系的根据有以下几点:

  当d >r时,直线l与圆c相离;

  当d =r时,直线l与圆c相切;

  当d

  3、情态与价值观

  让学生通过观察图形,理解并掌握直线与圆的位置关系,培养学生数形结合的思想。

  (二)、教学重点与难点

  1、重点:直线与圆的位置关系的几何图形及其判断方法。

  2、难点:用坐标判断直线与圆的位置关系。

  三、教法学法分

  (一)、教法

  教学过程是教师和学生共同参与的过程,启发学生自主性学习,充分调动学生的积极性、主动性;有效地渗透数学思想方法,提高学生素质。根据这样的原则和所要完成的教学目标,并为激发学生的学习兴趣,我采用如下的教学方法:

  1、启发引导学生思考、分析、实验、探索、归纳。

  2、采用“从特殊到一般”、“从具体到抽象”的方法。

  3、体现“对比联系”、“数形结合”及“分类讨论”的思想方法。

  4、投影仪演示法。

  在整个过程中,应以学生看,学生想,学生议,学生练为主体,教师在学生仔细观察、类比、想象的基础上通过问题串的形式加以引导点拨,对照,归纳,整理,只有这样,才能唤起学生对原有知识的回忆,自觉地找到新旧知识的联系,使新学知识更牢固,理解更深刻。

  (二)、学法

  建构主义学习理论认为,学习是学生积极主动地建构知识的过程,学习应该与学生熟悉的背景相联系。在教学中,让学生在问题情境中,经历知识的形成和发展,通过观察、操作、归纳、探索、交流、反思参与学习,认识和理解数学知识,学会学习,发展能力。

  四、教学过程分析

  (一)、教学过程设计

  问题 设计意图 师生活动

  1、初中学过的平面几何中,直线与圆的位置关系有几类? 启发学生由图形获取判断直线与圆的位置关系的直观认知,引入新课 师:让学生之间进行讨论,交流,引导学生观察图形,导入新课

  生:看图,并说出自己的看法

  2、直线与圆的位置关系有几种? 得出直线与圆的位置关系的几何特征与种类 师:引导学生利用类比,归纳的思想,总结直线与圆的'位置关系的种类,进一步神话数形结合的数学思想

  生:学生观察图形,利用类比,归纳的思想,总结直线与圆的位置关

  3、在初中,我们怎么样判断直线与圆的位置关系呢?如何用直线与圆的方程判断他们之间的位置关系呢?

  你能说出判断直线与圆的位置关系的两

  种方法吗? 使学生回忆初中的数学知识,培养抽象的概括能力。

  抽象判断呢直线与圆的位置关系的思路和方法 师:引导学生回忆初中判断直线与圆的位置关系的思想过程

  生:回忆直线与圆的位置关系的判断过程

  师:引导学生从集合的角度判断直线与圆的方法

  生:利用图形,寻求两种方法的数学思路

  5、你能用两种判断直线与圆的位置关系的数学思路解决例1的问题吗? 体会判断直线与圆的位置关系的思想方法,关注量与量的之间的关系 师:指导学生阅读教材书上的例1

  生:阅读教材书上的例1,并完成教材书上的136页的练习题2

  6、通过学习教材书上的例1,你能总结下判断直线与圆的位置 关系的步骤吗? 是学生熟悉判断直线与圆的位置关系的基本步骤 生:于都例1

  师:分析例1 ,并展示解答过程,启发学生概括判断直线与圆的位置关系的基本步骤,注意给学生留有思考的时间

  生:交流自己总结的步骤

  7、通过学习教材书上的例2,你能说明例2中体现的数学思想方法吗? 进一步深化数形结合的数学思想 师:指导学生阅读并完成教材书上的例2 ,启发学生利用数形结合的数学思想解决问题

  生:阅读教材书上的例2 ,并完成137的练习题

  8、通过例2的学习,你发现了什么? 明确弦长的运算方法 师:引导并启发学生探索直线与圆的相交弦的求法

  生:通过分析,抽象,归纳,得出相交弦的运算方法

  9、完成教材书上的136页的习题1234 巩固所学过的知识,进一步理解和掌握直线与圆的位置关系 师:指导学生完成练习题

  生:互相讨论交流,完成练习题

  10、课堂小结

  教师提出下列问题让学生思考

  通过直线与圆的位置关系的判断,你学到什么了?

  判断直线与圆的位置关系有几种方法?他们的特点是什么?

  如何求直线与圆的相交弦长?

  (二)、作业设计

  作业分为必做题和选择题,必做题是对本节课学生知识水平的反馈,选择题是对本节课内容的延伸与连贯,强调学以致用。通过作业设置,使不同层次的学生都可以获得成功的喜悦,看到自己的潜能,从而激发学生饱满的学习兴趣,促进学生的自主发展、合作探究的学习氛围的形成。

  我设计了以下作业:

  必做题:课后习题A 1,2,3;

  选择题:课后习题B1,2,3;

  (三)、板书设计

  板书要基本体现课堂的内容和方法,体现课堂进程,能简明扼要反映知识结构及其相互关系:能指导教师的教学进程、引导学生探索知识;通过使用幻灯片辅助板书,节省课堂时间,使课堂进程更加连贯。

  五、评价分析

  学生学习的结果评价固然重要,但是更重要的是学生学习的过程评价。我采用了及时点评、延时点评与学生互评相结合,全面考查学生在知识、思想、能力等方面的发展情况,在质疑探究的过程中,评价学生是否有积极的情感态度和顽强的理性精神,在概念反思过程中评价学生的归纳猜想能力是否得到发展,通过巩固练习考查学生对本节是否有一个完整的集训,并进行及时的调整和补充。

  以上就是我对本节课的理解和设计,敬请各位专家、评委批评指正。

  谢谢!

高中数学说课稿6

  我将从教学理念;教材分析;教学目标;教学过程;教法、学法;教学评价六个方面来陈述我对本节课的设计方案。

  一、教学理念

  新的课程标准明确指出“数学是人类文化的重要组成部分,构成了公民所必须具备的一种基本素质。”其含义就是:我们不仅要重视数学的应用价值,更要注重其思维价值和人文价值。

  因此,创造性地使用教材,积极开发、利用各种教学资源,创设教学情境,让学生通过主动参与、积极思考、与人合作交流和创新等过程,获得情感、能力、知识的全面发展。本节课力图打破常规,充分体现以学生为本,全方位培养、提高学生素质,实现课程观念、教学方式、学习方式的转变。

  二、教材分析

  三角函数是中学数学的重要内容之一,它既是解决生产实际问题的工具,又是学习高等数学及其它学科的基础。本节课是在学习了任意角的三角函数,两角和与差的三角函数以及正、余弦函数的图象和性质后,进一步研究函数y=Asin(ωx+φ)的简图的画法,由此揭示这类函数的图象与正弦曲线的关系,以及A、ω、φ的物理意义,并通过图象的变化过程,进一步理解正、余弦函数的性质,它是研究函数图象变换的一个延伸,也是研究函数性质的一个直观反映。共3课时,本节课是继学习完振幅、周期、初相变换后的第二课时。

  本节课倡导学生自主探究,在教师的引导下,通过五点作图法正确找出函数y=sinx到y=sin(ωx+φ)的`图象变换规律是本节课的重点。

  难点是对周期变换、相位变换先后顺序调整后,将影响图象平移量的理解。因此,分析清不管哪种顺序变换,都是对一个字母x而言的变换成为突破本节课教学难点的关键。

  依据《课标》,根据本节课内容和学生的实际,我确定如下教学目标。

  三、教学目标

  [知识与技能]

  通过“五点作图法”正确找出函数y=sinx到y=sin(ωx+φ)的图象变换规律,能用五点作图法和图象变换法画出函数y=Asin(ωx+φ)的简图,能举一反三地画出函数y=Asin(ωx+φ)+k和y=Acos(ωx+φ)的简图。

  [过程与方法]

  通过引导学生对函数y=sinx到y=sin(ωx+φ)的图象变换规律的探索,让学生体会到由简单到复杂,特殊到一般的化归思想;并通过对周期变换、相位变换先后顺序调整后,将影响图象变换这一难点的突破,让学生学会抓住问题的主要矛盾来解决问题的基本思想方法。

  [情感态度与价值观]

  课堂中,通过对问题的自主探究,培养学生的独立意识和独立思考能力;小组交流中,学会合作意识;在解决问题的难点时,培养学生解决问题抓主要矛盾的思想。在问题逐步深入的研究中唤起学生追求真理,乐于创新的情感需求,引发学生渴求知识的强烈愿望,树立科学的人生观、价值观。

  四、教学过程(六问三练)

  1、设置情境

  《函数y=Asin(ωx+φ)的图象(第二课时)》说课稿。

高中数学说课稿7

  今天我说课的题目是《函数的单调性》,下面我将围绕本节课“教什么?”、“怎样教?”以及“为什么这样教?”三个问题,从教材分析、教学目标分析、教学重难点分析、教法与学法、教学过程五方面逐一加以分析和说明。

  一、说教材

  1、教材的地位和作用

  本节内容选自北师大版高中数学必修1,第二章第3节。函数是高中数学的课程,它是描述事物运动变化的模型,而函数的单调性是函数的一大特征,它为我们之后的学习奠定重要基础。

  2、学情分析

  本节课的学生是高一学生,他们在初中阶段,通过一次函数、二次函数、反比例函数的学习已经对函数的增减性有了初步的感性认识。在高中阶段,用符号语言刻画图形语言,用定量分析解释定性结果,有利于培养学生的理性思维,为后续函数的学习作准备,也为利用倒数研究单调性的相关知识奠定了基础。

  教学目标分析

  基于以上对教材和学情的分析以及新课标教学理念,我将教学目标分为以下三个部分:

  1、知识与技能(1)理解函数的单调性和单调函数的意义;

  (2)会判断和证明简单函数的单调性。

  2、过程与方法

  (1)培养从概念出发,进一步研究性质的意识及能力;

  (2)体会数形结合、分类讨论的数学思想。

  3、情感态度与价值观

  由合适的例子引发学生探求数学知识的欲望,突出学生的主观能动性,激发学生学习数学的兴趣。

  三、教学重难点分析

  通过以上对教材和学生的分析以及教学目标,我将本节课的重难点

  重点:

  函数单调性的概念,判断和证明简单函数的单调性。

  难点:

  1、函数单调性概念的认知

  (1)自然语言到符号语言的转化;

  (2)常量到变量的转化。

  2、应用定义证明单调性的代数推理论证。

  四、教法与学法分析

  1、教法分析

  基于以上对教材、学情的分析以及新课标的教学理念,本节课我采用启发式教学、多媒体辅助教学和讨论法。学生可以在多媒体中感受到数学在生活中的应用,启发式教学和讨论法发散学生思维,培养学生善于思考的能力。

  2、学法分析

  新课改理念告诉我们,学生不仅要学知识,更重要的是要学会怎样学习,为终生学习奠定扎实的基础。所以本节课我将引导学生通过合作交流、自主探索的方法理解函数的单调性及特征。

  五、教学过程

  为了更好的实现本课的三维目标,并突破重难点,我设计以下五个环节来进行我的教学。

  (一)知识导入

  温故而知新,我将先从之前学习的知识引入,给出一些函数,比如y=x、y=-x、y=|x|,让学生作出这些函数的图像,然后让学生讨论这些函数图像是上升的还是下降的,由此引入到我的新课。在这个过程中不仅可以检查学生掌握基本初等函数图像的情况,而且符合学生的认知结构,通过学生自主探究,从知识产生、发展的过程中构建新概念,有利于激发学生的思维和学习的积极主动性。

  (二)讲授新课

  1.问题:分别做出函数y=x2,y=x+2的图像,指出上面的函数图象在哪个区间是上升的,在哪个区间是下降的?

  通过学生熟悉的图像,及时引导学生观察,函数图像上A点的.运动情况,引导学生能用自然语言描述出,随着x增大时图像变化规律。让学生大胆的去说,老师逐步修正、完善学生的说法,最后给出正确答案。

  2、观察函数y=x2随自变量x变化的情况,设置启发式问题:

  (1)在y轴的右侧部分图象具有什么特点?

  (2)如果在y轴右侧部分取两个点(x1,y1),(x2,y2),当x1< p="">

  (3)如何用数学符号语言来描述这个规律?

  教师补充:这时我们就说函数y=x2在(0,+∞)上是增函数。

  (4)反过来,如果y=f(x)在(0,+∞)上是增函数,我们能不能得到自变量与函数值的变化规律呢?

  类似地分析图象在y轴的左侧部分。

  通过对以上问题的分析,从正、反两方面领会函数单调性。师生共同总结出单调增函数的定义,并解读定义中的关键词,如:区间内,任意,当x1< p="">

  仿照单调增函数定义,由学生说出单调减函数的定义。

  教师总结归纳单调性和单调区间的定义。注意强调:函数的单调性是函数在定义域某个区间上的局部性质,也就是说,一个函数在不同的区间上可以有不同的单调性。

  (我将给出函数y=x2,并画出这个函数的图像,让学生观察函数图像的特点,让他们描述函数图像的增减性,慢慢得到函数单调性的概念。在这个过程中,学生把对图像的感性认识转化为了数学关系,这种从特殊到一般的学习过程有利于学生对概念的理解)

  (三)巩固练习

  1练习1:说出函数f(x)=的单调区间,并指明在该区间上的单调性。x

  练习2:练习2:判断下列说法是否正确

  ①定义在R上的函数f(x)满足f(2)>f(1),则函数是R上的增函数。

  ②定义在R上的函数f(x)满足f(2)>f(1),则函数是R上不是减函数。

  1③已知函数y=,因为f(-1)< p="">

  1我将给出一些具体的函数,如y=,f(x)=3x+2让学生说出函数的单调区间,并指明在该区间x

  上的单调性。通过这种练习的方式,帮助学生巩固对知识的掌握。

  (四)归纳总结

  我先让学生进行小结,函数单调性定义,判断函数单调性的方法(图像、定义),然后教师进行补充,在这样一个过程中既有利于学生巩固知识,也有利于教师对学生的学习情况有一定的了解,为下一节课的教学过程做好准备。

  (五)布置作业

  必做题:习题2-3A组第2,4,5题。

  选做题:习题2-3B组第2题。

  新课程理念告诉我们,不同的人在数学上可以获得不同的发展,因此要设计不同程度要求的习题。

高中数学说课稿8

  一、教材分析

  1.《指数函数》在教材中的地位、作用和特点

  《指数函数》是人教版高中数学(必修)第一册第二章“函数”的第六节内容,是在学习了《指数》一节内容之后编排的。通过本节课的学习,既可以对指数和函数的概念等知识进一步巩固和深化,又可以为后面进一步学习对数、对数函数尤其是利用互为反函数的图象间的关系来研究对数函数的性质打下坚实的概念和图象基础,又因为《指数函数》是进入高中以后学生遇到的第一个系统研究的函数,对高中阶段研究对数函数、三角函数等完整的函数知识,初步培养函数的应用意识打下了良好的学习基础,所以《指数函数》不仅是本章《函数》的重点内容,也是高中学段的主要研究内容之一,有着不可替代的重要作用。

  此外,《指数函数》的知识与我们的日常生产、生活和科学研究有着紧密的联系,尤其体现在细胞分裂、贷款利率的计算和考古中的年代测算等方面,因此学习这部分知识还有着广泛的现实意义。本节内容的特点之一是概念性强,特点之二是凸显了数学图形在研究函数性质时的重要作用。

  2.教学目标、重点和难点

  通过初中学段的学习和高中对集合、函数等知识的系统学习,学生对函数和图象的关系已经构建了一定的认知结构,主要体现在三个方面:

  知识维度:对正比例函数、反比例函数、一次函数,二次函数等最简单的函数概念和性质已有了初步认识,能够从初中运动变化的角度认识函数初步转化到从集合与对应的观点来认识函数。

  技能维度:学生对采用“描点法”描绘函数图象的方法已基本掌握,能够为研究《指数函数》的性质做好准备。

  素质维度:由观察到抽象的数学活动过程已有一定的体会,已初步了解了数形结合的思想。

  鉴于对学生已有的知识基础和认知能力的分析,根据《教学大纲》的要求,我确定本节课的教学目标、教学重点和难点如下:

  (1)知识目标:

  ①掌握指数函数的概念;

  ②掌握指数函数的图象和性质;

  ③能初步利用指数函数的概念解决实际问题;

  (2)技能目标:

  ①渗透数形结合的基本数学思想方法

  ②培养学生观察、联想、类比、猜测、归纳的能力;

  (3)情感目标:

  ①体验从特殊到一般的学习规律,认识事物之间的普遍联系与相互转化,培养学生用联系的观点看问题②通过教学互动促进师生情感,激发学生的学习兴趣,提高学生抽象、概括、分析、综合的能力

  ③领会数学科学的应用价值。

  (4)教学重点:指数函数的图象和性质。

  (5)教学难点:指数函数的图象性质与底数a的关系。

  突破难点的关键:寻找新知生长点,建立新旧知识的联系,在理解概念的基础上充分结合图象,利用数形结合来扫清障碍。

  二、教法设计

  由于《指数函数》这节课的特殊地位,在本节课的教法设计中,我力图通过这一节课的教学达到不仅使学生初步理解并能简单应用指数函数的知识,更期望能引领学生掌握研究初等函数图象性质的一般思路和方法,为今后研究其它的函数做好准备,从而达到培养学生学习能力的目的,我根据自己对“诱思探究”教学模式和“情景式”教学模式的认识,将二者结合起来,主要突出了几个方面:

  1.创设问题情景.按照指数函数的在生活中的实际背景给出两个实例,充分调动学生的`学习兴趣,激发学生的探究心理,顺利引入课题,而这两个例子又恰好为研究指数函数中底数大于1和底数大于0小于1的图象做好了准备。

  2.强化“指数函数”概念.引导学生结合指数的有关概念来归纳出指数函数的定义,并向学生指出指数函数的形式特点,请学生思考对于底数a是否需要限制,如不限制会有什么问题出现,这样避免了学生对于底数a范围分类的不清楚,也为研究指数函数的图象做了“分类讨论”的铺垫。

  3.突出图象的作用.在数学学习过程中,图形始终使我们需要借助的重要辅助手段。一位数学家曾经说过“数离形时少直观,形离数时难入微”,而在研究指数函数的性质时,更是直接由图象观察得出性质,因此图象发挥了主要的作用。

  4.注意数学与生活和实践的联系.数学的本质是来源于生活,服务于实践。在课堂教学的引入、例题的讲解和课外知识的拓展部分,都介绍了与指数函数息息相关的生活问题,力图使学生了解到数学的基础学科作用,培养学生的数学应用意识。

  三、学法指导

  本节课是在学习完“指数”的概念和运算后编排的,针对学生实际情况,我主要在以下几个方面做了尝试:

  1.再现原有认知结构。在引入两个生活实例后,请学生回忆有关指数的概念,帮助学生再现原有认知结构,为理解指数函数的概念做好准备。

  2.领会常见数学思想方法。在借助图象研究指数函数的性质时会遇到分类讨论、数形结合等基本数学思想方法,这些方法将会贯穿整个高中的数学学习。

  3.在互相交流和自主探究中获得发展。在生活实例的课堂导入、指数函数的性质研究、例题与训练、课内小节等教学环节中都安排了学生的讨论、分组、交流等活动,让学生变被动的接受和记忆知识为在合作学习的乐趣中主动地建构新知识的框架和体系,从而完成知识的内化过程。

  4.注意学习过程的循序渐进。在概念、图象、性质、应用、拓展的过程中按照先易后难的顺序层层递进,让学生感到有挑战、有收获,跳一跳,够得着,不同难度的题目设计将尽可能照顾到课堂学生的个体差异。

  四、程序设计

  在设计本节课的教学过程中,本着遵循学生的认知规律、让学生去经历知识的形成与发展过程的原则,我设计了如下的教学程序,启发学生逐步发现和认识指数函数的图象和性质。

  1.创设情景、导入新课

  教师活动:

  ①用电脑展示两个实例,第一个是计算机价格下降问题,第二个是生物中细胞分裂的例子,

  ②将学生按奇数列、偶数列分组。

  学生活动:

  ①分别写出计算机价格y与经过月份x的关系式和细胞个数y与分裂次数x的关系式,并互相交流;

  ②回忆指数的概念;

  ③归纳指数函数的概念;

  ④分析出对指数函数底数讨论的必要性以及分类的方法。

  设计意图:通过生活实例激发学生的学习动机,,扫清由概念不清而造成的知识障碍,培养学生思维的主动性, 为突破难点做好准备;

  2.启发诱导、探求新知

  教师活动:

  ①给出两个简单的指数函数并要求学生画它们的图象②在准备好的小黑板上规范地画出这两个指数函数的图象③板书指数函数的性质。

  学生活动:

  ①画出两个简单的指数函数图象

  ②交流、讨论

  ③归纳出研究函数性质涉及的方面

  ④总结出指数函数的性质。

  设计意图:让学生动手作简单的指数函数的图象对深刻理解本节课的内容有着一定的促进作用,在学生完成基本作图之后,教师再利用课前已列表、建立坐标系的小黑板展示准确的作图方法,达到进一步规范学生的作图习惯的目的,然后借助“函数作图器”用多媒体将指数函数的图象推广到一般情况,学生就会很自然的通过观察图象总结出指数函数的性质,同时对于底数的讨论也就变得顺理成章。

  3.巩固新知、反馈回授

  教师活动:

  ①板书例1

  ②板书例2第一问

  ③介绍有关考古的拓展知识。

高中数学说课稿9

各位老师:

  大家好!我叫,来自湖南科技大学。我说课的题目是《辗转相除法与更相减损术》,内容选自于新课程人教A版必修3第一章第三节,课时安排为一个课时。下面我将从教材分析、教学目标分析、教学方法与手段分析、学法分析和教学过程分析等五大方面来阐述我对这节课的分析和设计:

  一、教材分析

  1.教材所处的地位和作用

  在前面的两节里,我们已经学习了一些简单的算法,对算法已经有了一个初步的了解。

  这节课的内容是继续加深对算法的认识,体会算法的思想。这节课所学习的辗转相除法与更相减损术是第三节我们所要学习的四种算法案例里的第一种。学生们通过本节课对中国古代数学中的算法案例——辗转相除法与更相减损术学习,体会中国古代数学对世界数学发展的贡献。

  2.教学的重点和难点

  重点:理解辗转相除法与更相减损术求最大公约数的方法。

  难点:把辗转相除法与更相减损术的方法转换成程序框图与程序语言。

  二、教学目标分析

  1.知识与技能目标:

  ⑴理解辗转相除法与更相减损术中蕴含的数学原理,并能根据这些原理进行算法分析。 ⑵基本能根据算法语句与程序框图的知识设计完整的程序框图并写出算法程序。

  2.过程与方法目标:

  ⑴对比用辗转相除法与更相减损术求两数的最大公约数的方法,比较它们在算法上的区别,并从程序的学习中体会数学的严谨。 ⑵领会数学算法与计算机处理的结合方式,初步掌握把数学算法转化成计算机语言的一般步骤。

  3.情感,态度和价值观目标

  ⑴通过阅读中国古代数学中的算法案例,体会中国古代数学对世界数学发展的贡献。

  ⑵在学习古代数学家解决数学问题的方法的过程中培养严谨的逻辑思维能力,在利用算法解决数学问题的过程中培养理性的精神和动手实践的能力。

  ⑶在合作学习的过程中体验合作的愉快和成功的喜悦。

  三、教学方法与手段分析

  1.教学方法:充分发挥学生的主体作用和教师的主导作用,采用启发式,并遵循循序渐进的教学原则。这有利于学生掌握从现象到本质,从已知到未知逐步形成概念的学习方法,有利于发展学生抽象思维能力和逻辑推理能力。

  2.教学手段:通过各种教学媒体(计算机)调动学生参与课堂教学的主动性与积极性。

  四、学法分析

  在理解最大公约数的基础上去发现辗转相除法与更相减损术中的数学规律,并能模仿已经学过的程序框图与算法语句设计出辗转相除法与更相减损术的程序框图与算法程序。

  五、教学过程分析

  ㈠复习引入

  1. 首先要回顾一下前面我们已经学习过的算法的三种表示方法:自然语言、程序框图(三种逻辑结构)、程序语言(五种基本语句),这个是为了带领学生们对之前学过的内容熟悉一下,也为下面的学习打下基础。

  2. 然后提出问题:在初中,我们已经学过求最大公约数的知识,你能求出18与30的公约数吗?

  3. 接着教师进一步提出问题,我们都是利用找公约数的.方法来求最大公约数,如果公约数比较大而且根据我们的观察又不能得到一些公约数,我们又应该怎样求它们的最大公约数?比如求8251与6105的最大公约数?由此就引出我们这一堂课所要探讨的内容。(板出课题)

  ㈡讲授新课

  1.首先我们学习的是辗转相除法,为了更好地总结出辗转相除法求最大公约数的基本步骤,我先给出了一个例题。

  例1求两个正数8251和6105的最大公约数。

  在老师的引导下,师生一同完成整个解题过程,然后分析这些步骤,得出辗转相除法求最大公约数的基本步骤. 2.然后依照同样的方法学习更相减损术求最大公约数的基本步骤 (这样能够锻炼学生们的逻辑思维能力以及概括能力)

  3.给出两道练习,以及时巩固刚刚学习的新知识。

  练习 1利用辗转相除法求两数4081与20723的最大公约数(答案:53)

  2 用更相减损术求两个正数84与72的最大公约数。(答案:12)

  4.思考:你能利用辗转相除法和更相减损术试着设计程序求出上面两道练习的答案吗?然后

  试着在计算机上运行程序。(这样可以激发学生们的学习兴趣,并且将学习的内容得到及时的应用)

  ㈢课堂小结

  1.比较辗转相除法与更相减损术的区别

  2.对比分析辗转相除法与更相减损术求最大公约数的计算方法及完整算法程序。

  通过小结使学生们对知识有一个系统的认识,突出重点,抓住关键,培养概括能力。

  ㈣布置作业

  习题1.3 A组 1

  [设计意图]课后作业的布置是为了检验学生对本节课内容的理解和运用程度以及实际接受情况,并促使学生进一步巩固和掌握所学内容。

高中数学说课稿10

  一、说教材:

  1、地位、作用和特点:

  《 》是高中数学课本第 册( 修)的第 章“ ”的第 节内容,高中数学课本说课稿。

  本节是在学习了 之后编排的。通过本节课的学习,既可以对 的知识进一步巩固和深化,又可以为后面学习 打下基础,所以

  是本章的重要内容。此外,《 》的知识与我们日常生活、生产、科学研究 有着密切的联系,因此学习这部分有着广泛的现实意义。本节的特点之一是

  特点之二是: 。

  教学目标:

  根据《教学大纲》的要求和学生已有的知识基础和认知能力,确定以下教学目标:

  (1)知识目标:A、B、C

  (2)能力目标:A、B、C

  (3)德育目标:A、B

  教学的重点和难点:

  (1)教学重点:

  (2)教学难点:

  二、说教法:

  基于上面的教材分析,我根据自己对研究性学习“启发式”教学模式和新课程改革的理论认识,结合本校学生实际,主要突出了几个方面:一是创设问题情景,充分调动学生求知欲,并以此来激发学生的探究心理。二是运用启发式教学方法,就是把教和学的各种方法综合起来统一组织运用于教学过程,以求获得最佳效果。另外还注意获得和交换信息渠道的综合、教学手段的综合和课堂内外的综合。并且在整个教学设计尽量做到注意学生的心理特点和认知规律,触发学生的思维,使教学过程真正成为学生的学习过程,以思维教学代替单纯的记忆教学。三是注重渗透数学思考方法(联想法、类比法、数形结合等一般科学方法)。让学生在探索学习知识的过程中,领会常见数学思想方法,培养学生的探索能力和创造性素质。四是注意在探究问题时留给学生充分的时间,以利于开放学生的思维。当然这就应在处理教学内容时能够做到叶老师所说“教就是为了不教”。因此,拟对本节课设计如下教学程序:

  导入新课 新课教学

  反馈发展

  三、说学法:

  学生学习的过程实际上就是学生主动获取、整理、贮存、运用知识和获得学习能力的过程,因此,我觉得在教学中,指导学生学习时,应尽量避免单纯地、直露地向学生灌输某种学习方法。有效的能被学生接受的学法指导应是渗透在教学过程中进行的,是通过优化教学程序来增强学法指导的目的性和实效性。在本节课的教学中主要渗透以下几个方面的学法指导。

  1、培养学生学会通过自学、观察、实验等方法获取相关知识,使学生在探索研究过程中分析、归纳、推理能力得到提高。

  本节教师通过列举具体事例来进行分析,归纳出 ,并依

  据此知识与具体事例结合、推导出 ,这正是一个分析和推理的全过程。

  2、让学生亲自经历运用科学方法探索的过程。 主要是努力创设应用科学方法探索、解决问题情境,让学生在探索中体会科学方法,如在讲授 时,可通过

  演示,创设探索 规律的情境,引导学生以可靠的事实为基础,经过抽象思维揭示内在规律,从而使学生领悟到把可靠的事实和深刻的理论思维结合起来的特点。

  3、让学生在探索性实验中自己摸索方法,观察和分析现象,从而发现“新”的问题或探索出“新”的规律。从而培养学生的发散思维和收敛思维能力,激发学生的创造动力。在实践中要尽可能让学生多动脑、多动手、多观察、多交流、多分析;老师要给学生多点拨、多启发、多激励,不断地寻找学生思维和操作上的`闪光点,及时总结和推广。

  4、在指导学生解决问题时,引导学生通过比较、猜测、尝试、质疑、发现等探究环节选择合适的概念、规律和解决问题方法,从而克服思维定势的消极影响,促进知识的正向迁移。如教师引导学生对比中,蕴含的本质差异,从而摆脱知识迁移的负面影响。这样,既有利于学生养成认真分析过程、善于比较的好习惯,又有利于培养学生通过现象发掘知识内在本质的能力。

  四、教学过程:

  (一)、课题引入:

  教师创设问题情景(创设情景:A、教师演示实验。B、使用多媒体模拟一些比较有趣、与生活实践比较有关的事例,教案《高中数学课本说课稿》。C、讲述数学科学史上的有关情况。)激发学生的探究欲望,引导学生提出接下去要研究的问题。

  (二)、新课教学:

  1、针对上面提出的问题,设计学生动手实践,让学生通过动手探索有关的知识,并引导学生进行交流、讨论得出新知,并进一步提出下面的问题。

  2、组织学生进行新问题的实验方法设计—这时在设计上最好是有对比性、数学方法性的设计实验,指导学生实验、通过多媒体的辅助,显示学生的实验数据,模拟强化出实验情况,由学生分析比较,归纳总结出知识的结构。

  (三)、实施反馈:

  1、课堂反馈,迁移知识(最好迁移到与生活有关的例子)。让学生分析有关的问题,实现知识的升华、实现学生的再次创新。

  2、课后反馈,延续创新。通过课后练习,学生互改作业,课后研实验,实现课堂内外的综合,实现创新精神的延续。

  五、板书设计:

  在教学中我把黑板分为三部分,把知识要点写在左侧,中间知识推导过程,右边实例应用。

  六、说课综述:

  以上是我对《 》这节教材的认识和对教学过程的设计。在整个课堂中,我引导学生回顾前面学过的 知识,并把它运用到对

  的认识,使学生的认知活动逐步深化,既掌握了知识,又学会了方法。

  总之,对课堂的设计,我始终在努力贯彻以教师为主导,以学生为主体,以问题为基础,以能力、方法为主线,有计划培养学生的自学能力、观察和实践能力、思维能力、应用知识解决实际问题的能力和创造能力为指导思想。并且能从各种实际出发,充分利用各种教学手段来激发学生的学习兴趣,体现了对学生创新意识的培养。

高中数学说课稿11

  一、本节内容的地位与重要性

  "分类计数原理与分步计数原理"是《高中数学》一节独特内容。这一节课与排列、组合的基本概念有着紧密的联系,通过对这一节课的学习,既可以让学生接受、理解分类计数原理与分步计数原理,还为日后排列、组合和二项式定理的教学做好准备,起到奠基的重要作用。

  二、关于教学目标的确定

  根据两个基本原理的地位和作用,我认为本节课的教学目标是:

  (1)使学生正确理解两个基本原理的概念;

  (2)使学生能够正确运用两个基本原理分析、解决一些简单问题;

  (3)提高分析、解决问题的能力

  (4)使学生树立"由个别到一般,由一般到个别"的认识事物的辩证唯物主义哲学思想观点。

  三、关于教学重点、难点的选择和处理

  中学数学课程中引进的关于排列、组合的计算公式都是以两个计数原理为基础的,而一些较复杂的排列、组合应用题的求解,更是离不开两个基本原理,所以正确理解两个基本原理并能解决实际问题是学习本章的重点内容。

  正确使用两个基本原理的前提是要学生清楚两个基本原理使用的条件。而原理中提到的分步和分类,学生不是一下子就能理解深刻的,面对复杂的事物和现象学生对分类和分步的选择容易产生错误的认识,所以分类计数原理和分步计数原理的准确应用是本节课的教学难点。必需使学生认清两个基本原理的实质就是完成一件事需要分类还是分步,才能使学生接受概念并对如何运用这两个基本原理有正确清楚的认识。教学中两个基本问题的引用及引伸,就是为突破难点做准备。

  四、关于教学方法和教学手段的选用

  根据本节课的内容及学生的实际水平,我采取启发引导式教学方法并充分发挥电脑多媒体的辅助教学作用。

  启发引导式作为一种启发式教学方法,体现了认知心理学的基本理论。符合教学论中的自觉性和积极性、巩固性、可接受性、教学与发展相结合、教师的主导作用与学生的主体地位相统一等原则,教学过程中,教师采用点拨的方法,启发学生通过主动思考、动手操作来达到对知识的"发现"和接受,进而完成知识的内化,使书本的知识成为自己的知识。

  电脑多媒体以声音、动画、影像等多种形式强化对学生感观的刺激,这一点是粉笔和黑板所不能比拟的,采取这种形式,可以极大提高学生的学习兴趣,加大一堂课的信息容量,使教学目标更完美地体现。另外,电脑软件具有良好的交互性,可以将教师的思路和策略以软件的形式来体现,更好地为教学服务。

  五、关于学法的指导

  "授人以鱼,不如授人以渔",在教学过程中,不但要传授学生课本知识,还要培养学生主动观察、主动思考、自我发现的学习能力,增强学生的综合素质,从而达到教学的目标。教学中,教师创设疑问,学生想办法解决疑问,通过教师的'启发点拨,类比推理,在积极的双边活动中,学生找到了解决疑难的方法。整个过程贯穿"设疑"——"思索"——"发现"——"解惑"四个环节,学生随时对所学知识产生有意注意,思想上经历了从肯定到否定、又从否定到肯定的辨证思维过程,符合学生认知水平,培养了学习能力。

  六、关于教学程序的设计

  (一)课题导入

  这是本章的第一节课,是起始课,讲起始课时,把这一学科的内容作一个大概的介绍,能使学生从一开始就对将要学习的知识有一个初步的了解,并为下面的学习打下思想基础。所以,首先阅读引言,明确任务,激发兴趣。由学生感兴趣的乒乓球比赛提出问题,引出学习本节的必要性,明确研究计数方法是本章内容的独特性,从应用的广泛看学习本章内容的重要性。同时板书课题(分类计数原理与分步计数原理)

  这样做,能使学生明白本节内容的地位和作用,激发其学习新知识的欲望,为顺利完成教学任务做好思维上的准备。

  (二)新课讲授

  通过幻灯片给出问题,配图分析,讲清坐火车与坐汽车两类方法均可,每类中任一种办法都可以独立地把从甲地到乙地这件事办好。

  紧跟着给出:

  引申1:若甲地到乙地一天中还有4班轮船可乘,那么一天中,坐这些交通工具从甲地到一点共有多少种不同的走法?

  引伸2:若完成一件事,有 类办法。在第1类办法中有 种不同方法,在第2类办法中有 种不同的方法,……,在第 类办法中有 种不同方法,每一类中的每一种方法均可完成这件事,那么完成这件事共有多少种不同方法?

  这个问题的两个引申由渐入深、循序渐进为学生接受分类计数原理做好了准备。

  板书分类计数原理内容:

  完成一件事,有 类办法。在第1类办法中有 种不同方法,在第2类办法中有 种不同的方法,……,在第 类办法中有 种不同方法,那么完成这件事共有 种不同的方法。(也称加法原理)

  此时,趁学生对于原理有了一个较清晰的认识,引导学生分析分类计数原理内容,启发总结得下面三点注意:(出示幻灯片)

  (1)各分类之间相互独立,都能完成这件事;

  (2)根据问题的特点在确定的分类标准下进行分类;

  (3)完成这件事的任何一种方法必属于某一类,并且分别属于不同两类的两种方法都是不同的方法。

  这样做加深学生对分类计数原理的正确理解,突出了重点,突破了难点。

  接下来给出问题2:(出示幻灯片)

  由A村去B村的道路有3条,由B村去C村的道路有2条(见图9-1),从A村经B村去C村,共有多少种不同的走法?

  提出问题:问题1与问题2同是研究从甲地到乙地的不同走法,请找出这两个问题的不之处?学生会发现问题1中采用乘火车或乘汽车都可以从甲地到乙地,而问题2中必須经过先乘火车后乘汽车两个步骤才能完成从甲地到乙地这件事。

  问题2的讲授采用给出问题,配图分析,组织讨论,强调分步。用多媒体配不同的颜色闪现出六种不同的走法,让学生列式求出不同走法数,并列举所有走法。

  归纳得出:分步计数原理(板书原理内容)

  分步计数原理:做一件事,完成它需要分成n个步骤,做第一步有m1种不同的方法,做第二步有m2种不同的方法,……,做第n步有mn种不同的方法。那么,完成这件事共有

  N=m1×m2×…×mn

  种不同的方法。

  同样趁学生对定理有一定的认识,引导学生分析分步计数原理内容,启发总结得下面三点注意:(出示幻灯片)

  (1) 各步骤相互依存,只有各个步骤完成了,这件事才算完成;

  (2) 根据问题的特点在确定的分步标准下分步;

  (3) 分步时要注意满足完成一件事必须并且只需连续完成这N个步骤这件事才算完成。

  (三)应用举例

  教材例1:(书架取书问题)引导学生分析解答,注意区分是分类还是分步。

  例2:由数字0,1,2,3,4可以组成多少个三位整数(各位上的数字允许重复)?本题设置了4个问题:

  (1) 每一个三位数是由什么构成的?(三个整数字)

  (2) 023是一个三位数吗?(百位上不能是0)

  (3) 组成一个三位数需要怎么做?(分成三个步骤来完成:第一步确定百位上的数字;第二步确定十位上的数字;第三步确定个位上的数字)

  (4) 怎样表述?

  教师巡视指导、并归纳

  解:要组成一个三位数,需要分成三个步骤:第一步确定百位上的数字,从1~4这4个数字中任选一个数字,有4种选法;第二步确定十位上的数字,由于数字允许重复,共有5种选法;第三步确定个位上的数字,仍有5种选法。根据分步计数原理,得到可以组成的三位整数的个数是N=4×5×5=100.

  答:可以组成100个三位整数。

  (教师的连续发问、启发、引导,帮助学生找到正确的解题思路和计算方法,使学生的分析问题能力有所提高。

  教师在第二个例题中给出板书示范,能帮助学生进一步加深对两个基本原理实质的理解,周密的考虑,准确的表达、规范的书写,对于学生周密思考、准确表达、规范书写良好习惯的形成有着积极的促进作用,也可以为学生后面应用两个基本原理解排列、组合综合题打下基础)

  (四)归纳小结

  师:什么时候用分类计数原理、什么时候用分步计数原理呢?

  生:分类时用分类计数原理,分步时用分步计数原理。

  师:应用两个基本原理时需要注意什么呢?

  生:分类时要求各类办法彼此之间相互排斥;分步时要求各步是相互独立的。

  (五)课堂练习

  P222:练习1~4.学生板演第4题

  (对于题4,教师有必要对三个多项式乘积展开后各项的构成给以提示)

  (六)布置作业

  P222:练习5,6,7.

  补充题:

  1.在所有的两位数中,个位数字小于十位数字的共有多少个?

  (提示:按十位上数字的大小可以分为9类,共有9+8+7+…+2+1=45个个位数字小于十位数字的两位数)

  2.某学生填报高考志愿,有m个不同的志愿可供选择,若只能按第一、二、三志愿依次填写3个不同的志愿,求该生填写志愿的方式的种数。

  (提示:需要按三个志愿分成三步。共有m(m-1)(m-2)种填写方式)

  3.在所有的三位数中,有且只有两个数字相同的三位数共有多少个?

  (提示:可以用下面方法来求解:(1)△△□,(2)△□△,(3)□△□,(1),(2),(3)类中每类都是9×9种,共有9×9+9×9+9×9=3×9×9=243个只有两个数字相同的三位数)

  4.某小组有10人,每人至少会英语和日语中的一门,其中8人会英语,5人会日语,(1)从中任选一个会外语的人,有多少种选法?(2)从中选出会英语与会日语的各1人,有多少种不同的选法?

  (提示:由于8+5=13>10,所以10人中必有3人既会英语又会日语。(1)N=5+2+3;(2)N=5×2+5×3+2×3)

  只要大家用心学习,认真复习,就有可能在高中的战场上考取自己理想的成绩。

高中数学说课稿12

  课题:函数的单调性

  教材:人教版全日制普通高级中学教科书(必修)数学第一册(上)

  授课教师:北京景山学校许云尧

  【教学目标】

  1.使学生从形与数两方面理解函数单调性的概念,初步掌握利用函数图象和定义判断、证明函数单调性的方法.

  2.通过对函数单调性定义的探究,渗透数形结合的思想方法,培养学生观察、归纳、抽象的能力和语言表达能力;通过对函数单调性的证明,提高学生的推理论证能力.

  3.通过知识的探究过程培养学生细心观察、认真分析、严谨论证的良好思维习惯,让学生感知从具体到抽象,从特殊到一般,从感性到理性的认知过程.

  【教学重点】函数单调性的概念、判断及证明.

  【教学难点】根据定义证明函数的单调性.

  【教学方法】教师启发讲授,学生探究学习.

  【教学手段】计算机、投影仪.

  【教学过程】

  一、创设情境,引入课题

  为了预测北京奥运会开幕式当天的天气情况,数学兴趣小组研究了xxxx年到xxxx年每年这一天的天气情况,下图是北京市今年8月8日一天24小时内气温随时间变化的曲线图.

  引导学生识图,捕捉信息,启发学生思考.

  问题:观察图形,能得到什么信息?

  预案:

  (1)当天的最高温度、最低温度以及达到的时刻;

  (2)在某时刻的温度;

  (3)某些时段温度升高,某些时段温度降低.

  教师指出:在生活中,我们关心很多数据的变化规律,了解这些数据的变化规律,对我们的生活是很有帮助的.

  问题:还能举出生活中其他的数据变化情况吗?

  预案:水位高低、降雨量、燃油价格、股票价格等.

  归纳:用函数观点看,其实这些例子反映的就是随着自变量的变化,函数值是变大还是变小.

  〖设计意图〗由生活情境引入新课,激发兴趣.

  二、归纳探索,形成概念

  对于自变量变化时,函数值是变大还是变小,是函数的重要性质,称为函数的单调性,同学们在初中对函数的这种性质就有了一定的认识,但是没有严格的定义,今天我们的任务首先就是建立函数单调性的严格定义.

  1.借助图象,直观感知

  问题1:分别作出函数的'图象,并且观察自变量变化时,函数值的变化规律?

  预案:

  (1)函数,在整个定义域内y随x的增大而增大;函数,在整个定义域内y随x的增大而减小.

  (2)函数,在上y随x的增大而增大,在上y随x的增大而减小.

  (3)函数,在上y随x的增大而减小,在上y随x的增大而减小.

  引导学生进行分类描述(增函数、减函数),同时明确函数的单调性是对定义域内某个区间而言的,是函数的局部性质.

  问题2:能不能根据自己的理解说说什么是增函数、减函数吗?

  预案:如果函数在某个区间上随自变量x的增大,y也越来越大,我们说函数在该区间上为增函数;如果函数在某个区间上随自变量x的增大,y越来越小,我们说函数在该区间上为减函数.

  教师指出:这种认识是从图象的角度得到的,是对函数单调性的直观、描述性的认识.

  〖设计意图〗从图象直观感知函数单调性,完成对函数单调性的第一次认识.

  2.抽象思维,形成概念

  问题1:如图是函数的图象,能说出这个函数分别在哪个区间为增函数和减函数吗?

  学生的困难是难以确定分界点的确切位置.

  通过讨论,使学生感受到用函数图象判断函数单调性虽然比较直观,但有时不够精确,需要结合解析式进行严密化、精确化的研究.

  〖设计意图〗使学生体会到用数量大小关系严格表述函数单调性的必要性.

  问题2:如何从解析式的角度说明在上为增函数?

  预案:(1)在给定区间内取两个数,例如2和3,因为22<32,所以在上为增函数.

  (2)仿(1),取多组数值验证均满足,所以在为增函数.

  (3)任取,因为,即,所以在上为增函数.

  对于学生错误的回答,引导学生分别用图形语言和文字语言进行辨析,使学生认识到问题的根源在于自变量不可能被穷举,从而引导学生在给定的区间内任意取两个自变量.

  〖设计意图〗把对单调性的认识由感性上升到理性认识的高度,完成对概念的第二次认识.事实上也给出了证明单调性的方法,为第三阶段的学习做好铺垫.

  问题3:你能用准确的数学符号语言表述出增函数的定义吗?

  师生共同探究,得出增函数严格的定义,然后学生类比得出减函数的定义.

  (1)板书定义

  (2)巩固概念

  三、掌握证法,适当延展

  例1证明函数在上是增函数.

  1.分析解决问题

  针对学生可能出现的问题,组织学生讨论、交流.

  2.归纳解题步骤

  引导学生归纳证明函数单调性的步骤:设元、作差、变形、断号、定论.

  练习:证明函数在上是增函数.

  问题:除了用定义外,如果证得对任意的,且有,能断定函数在区间上是增函数吗?

  引导学生分析这种叙述与定义的等价性.让学生尝试用这种等价形式证明函数在上是增函数.

  〖设计意图〗初步掌握根据定义证明函数单调性的方法和步骤.了解等价形式进一步发展可以得到导数法,为今后用导数方法研究函数单调性埋下伏笔.

  四、归纳小结,提高认识

  学生交流在本节课学习中的体会、收获,交流学习过程中的体验和感受,师生合作共同完成小结.

  1.小结

  (1)概念探究过程:直观到抽象、特殊到一般、感性到理性.

  (2)证明方法和步骤:设元、作差、变形、断号、定论.

  (3)数学思想方法:数形结合.

  2.作业

  书面作业:课本第60页习题2.3第4,5,6题.

  课后探究:研究函数的单调性.

高中数学说课稿13

  尊敬的各位评委、各位老师大家好!我说课的题目是《直线的点斜式方程》,选自人民教育出版社普通高中课程标准试验教科书数学必修2(A版),是第三章直线与方程中的第2节的第一课时3.2.1直线的点斜式方程的内容。下面我将从教学背景、教学方法、教学过程及教学特点等四个方面具体说明。

  一、教学背景的分析

  1.教材分析

  直线的方程是学生在初中学习了一次函数的概念和图象及高中学习了直线的斜率后进行研究的。直线的方程属于解析几何学的基础知识,是研究解析几何学的开始,对后续研究两条直线的位置关系、圆的方程、直线与圆的位置关系、圆锥曲线等内容,无论在知识上还是方法上都是地位显要,作用非同寻常,是本章的重点内容之一。“直线的点斜式方程”可以说是直线的方程的形式中最重要、最基本的形式,在此花多大的时间和精力都不为过。直线作为常见的最简单的曲线,在实际生活和生产实践中有着广泛的应用。同时在这一节中利用坐标法来研究曲线的数形结合、几何直观等数学思想将贯穿于我们整个高中数学教学。

  2.学情分析

  我校的生源较差,学生的基础和学习习惯都有待加强。又由于刚开始学习解析几何,第一次用坐标法来求曲线的方程,在学习过程中,会出现“数”与“形”相互转化的困难。另外我校学生在探究问题的能力,合作交流的意识等方面更有待加强。

  根据上述教材分析,考虑到学生已有的认知结构和心理特征,我制定如下教学目标:

  3.教学目标

  (1)了解直线的方程的概念和直线的点斜式方程的推导过程及方法;

  (2)明确点斜式、斜截式方程的形式特点和适用范围;初步学会准确地使用直线的点斜式、斜截式方程 ;

  (3)从实例入手,通过类比、推广、特殊化等,使学生体会从特殊到一般再到特殊的认知规律;

  (4)提倡学生用旧知识解决新问题,通过体会直线的斜截式方程与一次函数的关系等活动,培养学生主动探究知识、合作交流的意识,并初步了解数形结合在解析几何中的应用。

  4. 教学重点与难点

  (1)重点: 直线点斜式、斜截式方程的特点及其初步应用。

  (2)难点:直线的方程的概念,点斜式方程的推导及点斜式、斜截式方程的应用。

  二、教法学法分析

  1.教法分析:根据学情,为了能调动学生学习的积极性,本节课采用“实例引导的启发式”问题教学法。帮助学生将几何问题代数化,用代数的语言描述直线的几何要素及其关系,进而将直线的问题转化为直线方程的问题,通过对直线的方程的研究,最终解决有关直线的一些简单的问题。另外可以恰当的利用多媒体课件进行辅助教学,激发学生的学习兴趣。

  2.学法分析:学生从问题中尝试、总结、质疑、运用,体会学习数学的乐趣;通过推导直线的点斜式方程的学习,要了解用坐标法求方程的思想;通过一个点和方向可以确定一条直线,进而可求出直线的点斜式方程,要能体会“形”与“数”的转化思想。

  下面我就对具体的教学过程和设计加以说明:

  三、教学过程的设计及实施

  整个教学过程是由六个问题组成,共分为四个环节,学习或涉及四个概念:

  温故知新,澄清概念----直线的方程

  深入探究,获得新知--------点斜式

  拓展知识,再获新知--------斜截式

  小结引申,思维延续--------两点式

  平面上的点可以用坐标表示,直线的倾斜程度可以用斜率表示,那么平面上的直线如何表示呢?这就是本节要学习的内容。

  (一)温故知新,澄清概念----直线的方程

  问题一:画出一次函数y=2x+1的图象;y=2x+1是一个方程吗?若是,那么方程的解与图象上的点的坐标有何关系?

  [学生活动] 通过动手画图,思考并尝试用语言进行初步的表述。

  [教师活动] 对于不同学生的表述进行分析、归纳,用规范的语言对方程和直线的方程进行描述。

  [设计意图]从学生熟知的旧知识出发澄清直线的方程的概念,试图做到“用学生已有的数学知识去学数学”,从而突破难点。通过对这个问题的研究,一方面认识到以方程的解为坐标的点在直线上,另一方面认识到直线上的点的坐标满足方程;从而使同学意识到直线可以由直线上任意一点P(x,y)的坐标x和y之间的等量关系来表示。

  问题二:若直线经过点A(-1, 3),斜率为-2,点P在直线l上。

  (1) 若点P在直线l上从A点开始运动,横坐标增加1时,点P的坐标是 ;

  (2)画出直线l,你能求出直线l的方程吗?

  (3)若点P在直线l上运动,设P点的坐标为(x,y),你会有什么方法找到x,y满足的`关系式?

  [学生活动]学生独立思考5分钟,必要的话可进行分组讨论、合作交流。

  [教师活动]巡视。肯定学生的各种方法及大胆尝试的行为;并引导学生观察发现,得到当点P在直线l上运动时(除点 A外),点P与定点A(-1, 3)所确定的直线的斜率恒等于-2,体会“动中有静”的思维策略。

  [设计意图]复习斜率公式;待定系数法;初步体会坐标法。同时引导学生注意为什么要把分式化简?(若不化简,就少一点),感受数学简洁的美感和严谨性。还要指出这样的事实:当点P在直线l上运动时,P的坐标(x,y)满足方程2x+y-1=0.反过来,以方程2x+y-1=0的解为坐标的点在直线l上。把学生的思维引到用坐标法研究直线的方程上来,此时再把问题深入,进入第二环节。

  (二)深入探究,获得新知----点斜式

  问题三: ① 若直线l经过点P0(x0,y0),且斜率为k,求直线l的方程。

  ②直线的点斜式方程能否表示经过P0(x0,y0)的所有直线?

  [学生活动] ①学生叙述,老师板书,强调斜率公式与点斜式的区别。 ②指导学生用笔转一转不难发现,当直线l的倾斜角α=90°时,斜率k不存在,当然不存在点斜式方程;讨论k=0的情况;观察并总结点斜式方程的特征。

  [设计意图] 由特殊到一般的学习思路,突破难点,培养学生的归纳概括能力。通过对这个问题的探究使学生获得直线点斜式方程;由②知:当直线斜率k不存在时,不能用点斜式方程表示直线,培养思维的严谨性,这时直线l与y轴平行,它上面的每一点的横坐标都等于x0,直线l的方程是:x=x0;通过学生的观察讨论总结,明确点斜式方程的形式特点和适用范围,通过下面的例题和基础练习,突破重难点。

  问题四:分别求经过点且满足下列条件的直线的方程

  (1) 斜率;(2)倾斜角; (3)与轴平行 ;(4)与轴垂直。

  [练习]P95.1、2。

  [学生活动]学生独立完成并展示或叙述,老师点评。

  [设计意图]充分用好教材的例题和习题,因为这些题都是专家精心编排的,充分体现必要性及合理性;做到及时反馈,便于反思本环节的教学,指导下个环节的安排;突破重点内容后,进入第三环节。

  (三)拓展知识,再获新知----斜截式

  问题五:(1)一条直线与y轴交于点(0,3),直线的斜率为2,求这条直线的方程。

  (2)若直线l斜率为k,且与y轴的交点是 P(0,b),求直线l的方程。

  [学生活动]学生独立完成后口述,教师板书。

  [设计意图] 由一般到特殊再到一般,培养学生的推理能力,同时引出截距的概念及斜截式方程,强调截距不是距离。类比点斜式明确斜截式方程的形式特点和适用范围及几何意义,并讨论其与一次函数的关系。通过下面的基础练习,突破重点。

  [练习]P95.3。

  [设计意图]充分用好教材习题,及时反馈本环节的教学情况,指导下个环节的安排。

  (四)小结引申,思维延续----两点式

  课堂小结 1、有哪些收获?(点斜式方程:;斜截式方程:;求直线方程的方法:公式法、等斜率法、待定系数法。)

  2、哪些地方还没有学好?

  问题六:(1)直线l过(1,0)点,且与直线平行,求直线l的方程。

  (2)直线l过点(2,-1)和点(3,-3),求直线l的方程。

  [学生活动]学生独立思考并尝试自主完成,可以相互讨论,探讨解题思路。

  [教师活动]教师深入学生中,与学生交流,了解学生思考问题的进展过程,有时间的话,可以让学生口述解题思路,也可以投影学生的证明过程,纠正出现的错误,规范书写的格式;没时间就布置分层作业。

  [设计意图](1)小题与上一节的平行综合,学生应该有思路求出方程;(2)小题解决方法较多,预设有利用公式法、等斜率法、待定系数法,让好一点的学生有一些发散思维的机会,以及课后学习的空间,使探究气氛有一点高潮。另外也为下节课研究直线的两点式方程作了重要的准备。

  分层作业 必做题:P100.A组:1.(1)(2)(3)、5.

  选做题:P100.A组:1.(4)(5)(6).

  [设计意图]通过分层作业,做到因材施教,使不同的学生在数学上得到不同的发展,让每一个学生都得到符合自身实践的感悟,使不同层次的学生都可以获得成功的喜悦,看到自己的潜能,从而激发学生饱满的学习兴趣,促进学生自主发展。

  四、教学特点分析

  (一)实例引导。在字母运算、公式推导之前,总是用实例作为铺垫,使学生有学习知识的可能和兴趣,关注学困生的成长与发展。

  (二)启发式教学。教学中总是以提问的方式叙述所学内容,如:1.直角坐标系内的所有直线都有点斜式方程吗?2.截距是距离吗?它可以是负数吗?3.你会求直线在轴上的截距吗?4.观察方程 ,它的形式具有什么特点?它与我们学过的一次函数有什么关系?等等。启发学生的思维,作好与学生的对话与交流活动。

  (三)注重自主探究。设计问题链,环环相扣,使学生的探究活动贯穿始终。教师总是站在学生思维的最近发展区上,布设了由浅入深的学习环境突破重点、难点,引导学生逐步发现知识的形成过程。设计了两次思维发散点,分别是问题二和问题六的第(2)问,要求学生分组讨论,合作交流,为学生创造充分的探究空间,学生在交流成果的过程中,高效的完成教学任务。

高中数学说课稿14

  以下是高中数学《等差数列前n项和的公式》说课稿,仅供参考。

  教学目标

  A、知识目标:

  掌握等差数列前n项和公式的推导方法;掌握公式的运用。

  B、能力目标:

  (1)通过公式的探索、发现,在知识发生、发展以及形成过程中培养学生观察、联想、归纳、分析、综合和逻辑推理的能力。

  (2)利用以退求进的思维策略,遵循从特殊到一般的认知规律,让学生在实践中通过观察、尝试、分析、类比的方法导出等差数列的求和公式,培养学生类比思维能力。

  (3)通过对公式从不同角度、不同侧面的剖析,培养学生思维的灵活性,提高学生分析问题和解决问题的能力。

  C、情感目标:(数学文化价值)

  (1)公式的发现反映了普遍性寓于特殊性之中,从而使学生受到辩证唯物主义思想的熏陶。

  (2)通过公式的运用,树立学生"大众教学"的思想意识。

  (3)通过生动具体的现实问题,令人着迷的数学史,激发学生探究的兴趣和欲望,树立学生求真的勇气和自信心,增强学生学好数学的心理体验,产生热爱数学的情感。

  教学重点:等差数列前n项和的公式。

  教学难点:等差数列前n项和的公式的灵活运用。

  教学方法:启发、讨论、引导式。

  教具:现代教育多媒体技术。

  教学过程

  一、创设情景,导入新课。

  师:上几节,我们已经掌握了等差数列的概念、通项公式及其有关性质,今天要进一步研究等差数列的前n项和公式。提起数列求和,我们自然会想到德国伟大的数学家高斯"神速求和"的故事,小高斯上小学四年级时,一次教师布置了一道数学习题:"把从1到100的自然数加起来,和是多少?"年仅10岁的小高斯略一思索就得到答案5050,这使教师非常吃惊,那么高斯是采用了什么方法来巧妙地计算出来的呢?如果大家也懂得那样巧妙计算,那你们就是二十世纪末的新高斯。(教师观察学生的表情反映,然后将此问题缩小十倍)。我们来看这样一道一例题。

  例1,计算:1+2+3+4+5+6+7+8+9+10.

  这道题除了累加计算以外,还有没有其他有趣的解法呢?小组讨论后,让学生自行发言解答。

  生1:因为1+10=2+9=3+8=4+7=5+6,所以可凑成5个11,得到55。

  生2:可设S=1+2+3+4+5+6+7+8+9+10,根据加法交换律,又可写成 S=10+9+8+7+6+5+4+3+2+1。

  上面两式相加得2S=11+10+......+11=10×11=110

  10个

  所以我们得到S=55,

  即1+2+3+4+5+6+7+8+9+10=55

  师:高斯神速计算出1到100所有自然数的各的方法,和上述两位同学的.方法相类似。

  理由是:1+100=2+99=3+98=......=50+51=101,有50个101,所以1+2+3+......+100=50×101=5050。请同学们想一下,上面的方法用到等差数列的哪一个性质呢?

  生3:数列{an}是等差数列,若m+n=p+q,则am+an=ap+aq.

  二、教授新课(尝试推导)

  师:如果已知等差数列的首项a1,项数为n,第n项an,根据等差数列的性质,如何来导出它的前n项和Sn计算公式呢?根据上面的例子同学们自己完成推导,并请一位学生板演。

  生4:Sn=a1+a2+......an-1+an也可写成

  Sn=an+an-1+......a2+a1

  两式相加得2Sn=(a1+an)+(a2+an-1)+......(an+a1)

  n个

  =n(a1+an)

  所以Sn=

  #FormatImgID_0#

  (I)

  师:好!如果已知等差数列的首项为a1,公差为d,项数为n,则an=a1+(n-1)d代入公式(1)得

  Sn=na1+

  #FormatImgID_1#

  d(II) 上面(I)、(II)两个式子称为等差数列的前n项和公式。公式(I)是基本的,我们可以发现,它可与梯形面积公式(上底+下底)×高÷2相类比,这里的上底是等差数列的首项a1,下底是第n项an,高是项数n。引导学生总结:这些公式中出现了几个量?(a1,d,n,an,Sn),它们由哪几个关系联系?[an=a1+(n-1)d,Sn=

  #FormatImgID_2#

  =na1+

  #FormatImgID_3#

  d];这些量中有几个可自由变化?(三个)从而了解到:只要知道其中任意三个就可以求另外两个了。下面我们举例说明公式(I)和(II)的一些应用。

  三、公式的应用(通过实例演练,形成技能)。

  1、直接代公式(让学生迅速熟悉公式,即用基本量观点认识公式)例2、计算:

  (1)1+2+3+......+n

  (2)1+3+5+......+(2n-1)

  (3)2+4+6+......+2n

  (4)1-2+3-4+5-6+......+(2n-1)-2n

  请同学们先完成(1)-(3),并请一位同学回答。

  生5:直接利用等差数列求和公式(I),得

  (1)1+2+3+......+n=

  #FormatImgID_4#

  (2)1+3+5+......+(2n-1)=

  #FormatImgID_5#

  (3)2+4+6+......+2n=

  #FormatImgID_6#

  =n(n+1)

  师:第(4)小题数列共有几项?是否为等差数列?能否直接运用Sn公式求解?若不能,那应如何解答?小组讨论后,让学生发言解答。

  生6:(4)中的数列共有2n项,不是等差数列,但把正项和负项分开,可看成两个等差数列,所以

  原式=[1+3+5+......+(2n-1)]-(2+4+6+......+2n)

  =n2-n(n+1)=-n

  生7:上题虽然不是等差数列,但有一个规律,两项结合都为-1,故可得另一解法:

  原式=-1-1-......-1=-n

  n个

  师:很好!在解题时我们应仔细观察,寻找规律,往往会寻找到好的方法。注意在运用Sn公式时,要看清等差数列的项数,否则会引起错解。

  例3、(1)数列{an}是公差d=-2的等差数列,如果a1+a2+a3=12,a8+a9+a10=75,求a1,d,S10。

  生8:(1)由a1+a2+a3=12得3a1+3d=12,即a1+d=4

  又∵d=-2,∴a1=6

  ∴S12=12 a1+66×(-2)=-60

  生9:(2)由a1+a2+a3=12,a1+d=4

  a8+a9+a10=75,a1+8d=25

  解得a1=1,d=3 ∴S10=10a1+

  #FormatImgID_7#

  =145

  师:通过上面例题我们掌握了等差数列前n项和的公式。在Sn公式有5个变量。已知三个变量,可利用构造方程或方程组求另外两个变量(知三求二),请同学们根据例3自己编题,作为本节的课外练习题,以便下节课交流。

  师:(继续引导学生,将第(2)小题改编)

  ①数列{an}等差数列,若a1+a2+a3=12,a8+a9+a10=75,且Sn=145,求a1,d,n

  ②若此题不求a1,d而只求S10时,是否一定非来求得a1,d不可呢?引导学生运用等差数列性质,用整体思想考虑求a1+a10的值。

  2、用整体观点认识Sn公式。

  例4,在等差数列{an}, (1)已知a2+a5+a12+a15=36,求S16;(2)已知a6=20,求S11。(教师启发学生解)

  师:来看第(1)小题,写出的计算公式S16=

  #FormatImgID_8#

  =8(a1+a6)与已知相比较,你发现了什么?

  生10:根据等差数列的性质,有a1+a16=a2+a15=a5+a12=18,所以S16=8×18=144。

  师:对!(简单小结)这个题目根据已知等式是不能直接求出a1,a16和d的,但由等差数列的性质可求a1与an的和,于是这个问题就得到解决。这是整体思想在解数学问题的体现。

  师:由于时间关系,我们对等差数列前n项和公式Sn的运用一一剖析,引导学生观察当d≠0时,Sn是n的二次函数,那么从二次(或一次)的函数的观点如何来认识Sn公式后,这留给同学们课外继续思考。

  最后请大家课外思考Sn公式(1)的逆命题:

  已知数列{an}的前n项和为Sn,若对于所有自然数n,都有Sn=

  #FormatImgID_9#

  。数列{an}是否为等差数列,并说明理由。

  四、小结与作业。

  师:接下来请同学们一起来小结本节课所讲的内容。

  生11:1、用倒序相加法推导等差数列前n项和公式。

  2、用所推导的两个公式解决有关例题,熟悉对Sn公式的运用。

  生12:1、运用Sn公式要注意此等差数列的项数n的值。

  2、具体用Sn公式时,要根据已知灵活选择公式(I)或(II),掌握知三求二的解题通法。

  3、当已知条件不足以求此项a1和公差d时,要认真观察,灵活应用等差数列的有关性质,看能否用整体思想的方法求a1+an的值。

  师:通过以上几例,说明在解题中灵活应用所学性质,要纠正那种不明理由盲目套用公式的学习方法。同时希望大家在学习中做一个有心人,去发现更多的性质,主动积极地去学习。

  本节所渗透的数学方法;观察、尝试、分析、归纳、类比、特定系数等。

  数学思想:类比思想、整体思想、方程思想、函数思想等。

高中数学说课稿15

  说课:古典概型

  麻城理工学校谢卫华

  (一)教材地位及作用:本节课是高中数学(必修

  3)第三章概率的第二节古典概型的第一课时,是在

  随机事件的概率之后,几何概型之前,尚未学习排列组合的情况下教学的。古典概型是一种特殊的数学模型,也是一种最基本的概率模型,在概率论中占有相当重要的地位。学好古典概型可以为其它概率的学习奠定基础,同时有利于理解概率的概念,有利于计算一些事件的概率,有利于解释生活中的一些问题。

  根据本节课的地位和作用以及新课程标准的具体要求,制订教学重点:理解古典概型的概念及利用古典概型求解随机事件的概率;

  根据本节课的内容,即尚未学习排列组合,以及学生的心理特点和认知水平,制定了教学难点:如何判断一个试验是否是古典概型,分清在一个古典概型中某随机事件包含的基本事件的个数和试验中基本事件的总数。

  (二)根据新课程标准,并结合学生心理发展的需求,以及人格、情感、价值观的具体要求制订教学目标:

  1.知识与技能

  (1)理解古典概型及其概率计算公式(2)会用列举法计算一些随机事件所含的基本事件数及事件发生的概率2.情感态度与价值观

  概率教学的核心问题是让学生了解随机现象与概率的意义,加强与实际生活的联系,以科学的态度评价身边的一些随机现象。适当地增加学生合作学习交流的机会,尽量地让学生自己举出生活和学习中与古典概型有关的实例。使得学生在体会概率意义的同时,感受与他人合作的重要性以及初步形成实事求是地科学态度和锲而不舍的求学精神

  (三)教学方法:根据本节课的内容和学生的实际水平,通过模拟试验让学生理解古典概型的特征,观

  察类比各个试验,归纳总结出古典概型的概率计算公式,体现了化归的重要思想,掌握列举法,学会运用数形结合、分类讨论的思想解决概率的计算问题。

  (四)教学过程:

  一、提出问题引入新课:在课前,教师布置任务,以数学小组为单位,完成下面两个模拟试验:试验一:抛掷一枚质地均匀的硬币,分别记录“正面朝上”和“反面朝上”的次数,要求每个数学小组至少完成20次(最好是整十数),最后由科代表汇总;

  试验二:抛掷一枚质地均匀的骰子,分别记录“1点”、“2点”、“3点”、“4点”、“5点”和“6点”的次数,要求每个数学小组至少完成60次(最好是整十数),最后由科代表汇总。

  教师最后汇总方法、结果和感受,并提出问题:1.用模拟试验的方法来求某一随机事件的概率好不好?为什么?2.根据以前的学习,上述两个模拟试验的每个结果之间都有什么特点?

  二、思考交流形成概念:学生观察对比得出两个模拟试验的相同点和不同点,教师给出基本事件的概念,并对相关特点加以说明,加深新概念的理解。我们把上述试验中的随机事件称为基本事件,它是试验的每一个可能结果。

  基本事件有如下的两个特点:(1)任何两个基本事件是互斥的;(2)任何事件(除不可能事件)都可以表示成基本事件的和。给出例题1,让学生自行解决,从而进一步理解基本事件,然后让学生先观察对比,找出两个模拟试验和例1的共同特点,再概括总结得到的结论,(1)试验中所有可能出现的基本事件只有有限个(有限性);(2)每个基本事件出现的可能性相等(等可能性)。我们将具有这两个特点的概率模型称为古典概率概型,简称

  古典概型。

  三、观察分析推导公式:教师提出问题:在古典概型下,基本事件出现的概率是多少?随机事件出现的概率如何计算?引导学生类比分析两个模拟试验和例1的概率,先通过用概率加法公式求出随机事件的概率,再对比概率

  结果,发现其中的联系。实验一中,出现正面朝上的概率与反面朝上的概率相等,即

  1“出现正面朝上”所包含的基本事件的个数,试验二中,出现各个点的`概率相等,即

  P(“出现正面朝上”)==

  2基本事件的总数3“出现偶数点”所包含的基本事件的个数,根据上述两则模拟试验,可以概括总结出,古典

  P(“出现偶数点”)==

  6基本事件的总数

  概型计算任何事件的

  的理解,教师提问:在使用古典概型的概率公式时,应该注意什么?学生回答,教师归纳:应该注意,(1)要判断该概率模型是不是古典概型;

  (2)要找出随机事件A包含的基本事件的个数和试验中基本事件的总数。

  四、例题分析推广应用:通过例题2及3,巩固学生对已学知识的掌握,提高学生分析问题、解决问题的能力。让学生明确决概率的计算问题的关键是:先要判断该概率模型是不是古典概型,再要找出随机事件A包含的基本事件的个数和试验中基本事件的总数。适时利用列表数形结合和分类讨论等思想方法,既能形象直观地列出基本事件的总数,又能做到列举的不重不漏。

  五、总结概括加深理解:学生小结归纳,不足的地方老师补充说明。使学生对本节课的知识有一个系统全面的认识,并把学过的相关知识有机地串联起来,便于记忆和应用,也进一步升华了这节课所要表达的本质思想,让学生的认知更上一层。

  (五)布置作业P123练习1、2题(六)板书设计

  3.2.13.2.1古典概型古典概型试验一试验二基本事件

  古典概型概率

  计算公式

  例3列表

  例1树状图古典概型

  例2

  以上是我对《古典概型概型》这节课的理解和处理方法,欢迎各位专家朋友批评指正,谢谢!

  说课教案:古典概型

  麻城理工学校谢卫华

【高中数学说课稿】相关文章:

高中数学的说课稿06-14

高中数学说课稿06-28

高中数学椭圆说课稿01-16

高中数学优秀说课稿03-04

(优选)高中数学说课稿05-17

关于高中数学说课稿02-18

高中数学说课稿(优)05-20

高中数学教学说课稿04-22

高中数学的说课稿范例【15篇】06-14

Copyright©2003-2024gushici.weiyujianbao.cn版权所有