当前位置:贤学网>范文>心得体会> 数学建模心得体会

数学建模心得体会

时间:2024-07-25 13:32:46 心得体会 我要投稿

数学建模心得体会

  我们有一些启发后,可以记录在心得体会中,这样有利于我们不断提升自我。很多人都十分头疼怎么写一篇精彩的心得体会,下面是小编收集整理的数学建模心得体会,供大家参考借鉴,希望可以帮助到有需要的朋友。

数学建模心得体会

数学建模心得体会1

  数学建模竞赛已经过去两三周了,回想起来,能有机会参加全国大学生数学建模竞赛,与全国各高校的大学生们进行公平、公正的比赛,我感到非常自豪。虽然说,我们的成绩不是太理想,但是我认为这两个月的时间是值得的,是值得记忆的两个月;是值得回忆的两个月;是有意义的两个月。现在想想,那培训和参赛中经历的事至今仍历历在目,除了在培训中知识面有了很大的扩宽外,我感到对我影响最大的要属那短短的不到两个月的时间使我对学习和生活的态度有了新的认识。总结起来我认为主要有一下几点:

  使我体会到了和他人交流合作的重要性。数学建模竞赛以“创新意识,团队精神,重在参与,公平竞争”为宗旨。数学建模是一个团队协作的过程,需要队友间密切配合。要达到这点,参赛组成员必须通力合作,发挥所长,肯于接纳队友的观点与意见。正如我们今年竞赛那样,面对A题和B题我们要有一个选择,一个三个人一致的选择,A题的人口模型和B题的公交线路,两个几乎完全不同的模型肯定都有相对容易的方面和相对较困难的方面。记得我们当时讨论了好长时间,最后统一了一下意见A题模型较多但建立一个比较符合题目且有一定创新的模型较为困难而B题数据较多具有一定挑战性但比较容易建立一个较符合题目的模型,我们选了B题,这是我们交流思想,接纳和权衡彼此观点与意见的结果。在接下来的就是我们三个队友的具体的分工,考虑到一个人完成的好坏直接影响的是一个队,我们的的压力都比较的,记得我当时的压力就比一个人时大的多(因为我清楚我写程序的好坏直接影响的我们模型的结果,甚至是我们的论文是不是能够完成),也许这就是集体精神的作用吧!使我真正的意识到没有合作是做不好事情的。现代社会需要合作,合作的过程中,肯定会有各种各样的问题,需要我们有宽广的胸怀来容纳。团队协作精神和集体主义观念在这里得到了充分的体现。

  使我对计算机编程有了新的认识。我是学计算机的,平常也写过很多的程序,不过那都是事先设计好的题目,要么是课本上的,要么是老师限定好条件的,有时却不知道和现实怎么联系到一起,感到没有用,也不知道怎么用。因而,写程序往往并不是出于多大的兴趣,然而这次竞赛却使体会到了那种完成一个自己比较满意的程序的成就感,连续的十几个,二十几个小时写一个程序也是也个挺刺激的.事情,一个很少有机会体验的经历!

  提高了我们的思维能力。数学建模竞赛可以锻炼思维,培养语言表达,无论是在培训期间还是在竞赛的那三天,大脑真正的进行了思考,一种不同与以往的思考,一种没有框框架架的思考,一种真正自由意义上的思考。这种思考可以使自己看问题的视野更加开阔,思维更加活跃,虽然一开始让人摸不着头脑,找不到头绪,同时为了解决问题,查资料、看书,查看相关专题,在短时间内要理解运用相关知识,这更使大脑能主动地去想问题,思考问题,提高了我们学习和应用知识的力。这是我们平常学习很难得到的。

  可以养成严谨的治学态度。数学建模竞赛充分体现出了严谨治学、善于否定自我和追求真理的精神。建模竞赛给了我们一次简单的科学研究工作的体验。我在其中体会最深的莫过于严密和细心,一个模糊和粗心可能带来一个完全不可知的后果。就在这次竞赛中,我在写程序时的一次疏忽,造成结果的完全错误,以及接下来的四五个小时没有进展,要知道这四五个小时代表的什么,后来找到错误时才发现是那样的“对不起”那四五个小时,是那样的不应该,仅仅是在地址访问时少考虑了一种情况。也许这就是科学研究中所要求的严谨吧!说真的,在当时检查出错误时心里有几分的兴奋(算是成就感吧!),但更多的是一种说不出来的味道——或是感到自己好笑,或是后悔当时的疏忽。不过值得安慰的是这是一种难得的经历,一种不容你再犯同样错误的经历,可以肯定的是无论在以后的生活还是学习中将永远记着这“四五个小时”,也许这就是经历之后的收获吧!

  知识面有了很大的扩宽。数学建模教会了我们用数学的知识认识一切,使得我们对问题的审视角度多了一层变化。在暑假的那段时间使我的知识面有了很大的扩宽,将所学的数学和其他方面的知识活用到经济,管理,工程,生物等各个领域,感受到从来没有体会到的成就感。如我们在培训时遇到的出版社问题,线路选择问题,优化问题,污染问题等等这些生活中的各各不同领域的实际问题。同时我们在求解以及表达这些模型的过程中,也使我们的软件应用水平,文章的写作水平,特别是用数学思维的能力有了大幅度的提高,当然数模使我们收获的不仅仅是这些。她培养了我们的综合素质,比如计算机应用能力,检索文献能力,学习新知识的意识与能力,论文撰写能力等;在和队友一起奋斗的过程中,使我们建立了深厚的友谊;在和指导老师孙老师的交往中,使我体验到了完全不同于课堂的另一种师生友谊;与周围的交际能力也得到提高,领悟和理解别人的意思的能力也得到了很好的锻炼。还有就是培养了自己的吃苦耐劳,在竞争中勇于挑战自我,在拼搏中开拓创新的精神。说起吃苦耐劳,自己都很佩服自己那三天三夜的精力,一种难得的经历。

  虽然仅有短短的两个月的时间,但是这段日子的收获却也不是简单的几句话就能列举出的,所得到的感触实在颇多,我认为数学建模是一项很有意义的活动,她已经超越了竞赛本身的界限,无论结果理想不理想,我想这段日子的回忆都将会伴我一生,这段日子的收获都将会对我今后的生活学习产生深远的影响!

数学建模心得体会2

  不同于传统的教学活动设计,STEAM教育坚持以学习者为中心。教师不仅让学生学会怎么做,而且引导学习者体验解决实际问题的过程,在探索中开启学习者的创造力。为了更好地实现用数模思想解决实际问题和创新能力的培养,参考STEAM教育知名学者亚克门教授及其团队提出的STEAM教学过程卡,对数学建模创新教育教学实施环节,提出了数学建模创新教育教学模式:What-材料有什么、要素是什么、问题是什么;How-模型假设、模型准备(学科知识、约束条件、算法工具)、工艺完善;Model-建立模型、算法设计、编程求解;Test-模型检验、评价与推广、论文写作。在教学模式设计体系中,围绕着STEAM的核心理念,包涵了三个主要的特定内容,即利用数学建模思想,整合多学科知识,以综合创新的形式建立数学模型,解决实际生活中的问题,并加以推广和运用。

  一、数学建模思想培养

  将建模思想培养渗透到STEAM教育领域的“做什么”和“怎么做”(WhatandHow)中,从对题目材料的读取分析获得信息,材料有什么,要素是什么,问题是什么,通过对材料的解读将现实问题“翻译”成抽象的数学问题,即用数学方法和数学手段进行模型假设、准备、建立、求解,并最终加以解释和验证,直到探究出问题的解,其中所要用到的归纳和演绎等方法无不是围绕数学建模的方法论展开,因此建模思想培养是主线。

  二、如何实现多学科整合

  随着数学以空前的广度和深度向一切领域的渗透,数学建模的运用领域越来越广泛,比如在以声、光、热、力、电这些物理学科为基础的诸如机械、电机、土木、水利等工程技术领域中,数学建模的普遍性和重要性不言而喻;在发展通信、航天、微电子、自动化等高新技术领域,数学建模几乎是必不可少的工具;随着数学向诸如经济、人口、生态、地质等所谓非物理领域的渗透,一些交叉学科如计量经济学、人口控制论、数学生态学、数学地质学应运而生,当用数学方法研究这些领域的定量关系时,数学建模就成为首要的、关键的步骤和这些学科发展与应用的基础。STEAM教育理念是:以数学为基础,通过工程和艺术来解读科学和技术。由此可见,数学建模创新教育的教学模式借鉴STEAM教育理念,融合学科的学习方式,跨学科思维解决实际问题,是非常必要的。在教学活动设计体系中,关于How、Model和Test三大模块中,多学科融合的解决方案便是实施校本课程。例如在建模准备阶段,涉及到的关于数学建模基本方法和各种模型、数学软件运用、计算机编程、普通物理、智能算法、图论、艺术设计概论、科技论文写作有关内容,都相应开展校本课程教学,由团队中不同的学科的教师针对学生的实际情况,提出相应的教学改革方案,设计出符合学生数学建模创新思维需要的校本课程内容(包含基本方法、主要模型、算法分析与设计、图论、软件和方法论等),提供学生所需的学习资源,建立一定的建模资源库,对学生进行一段时期的课程培训。不同阶段的完成项目过程中,例如建立模型和求解模型及检验,需要各学科教师引导学生对校本课程中知识的运用,通过解决问题来锻炼学生的STEAM素养和创新能力。

  三、综合创新的形式

  (一)解决方法的创新。解决方法的创新是指不拘泥于传统的只用数学的知识和方法解决问题。通过对近年全国大学生数学建模赛题研究发现,跨学科题型毫无疑问的,当学生拿到赛题的第一时间,关于What的问题,他们必然会展开思索、辨别和讨论,材料涉及哪些学科哪些知识,可以肯定的是它不仅仅是数学问题,不仅仅是对数学知识的运用,它一定会涉及诸如物理、工程、化工等多学科,因此,它必然不是简单的数学知识运用,它一定是多学科知识的融合与创新才能解决的.问题,而跨学科的知识融合,必然要从科学与技术的角度去创新,从艺术的角度去完善,使得数学建模在现实生活中发挥更加重大的作用。

  (二)学习方式的创新。学习方式的创新可以从以下几个方面理解:

  一是学生需要运用跨学科的知识和技术来支持问题解决,当涉及内容时能够回顾所学知识并作更深入的理解。比如20xx 年全国大学生数学建模A题《基于非稳态导热的高温作业专用服装设计》中,学生就要用到高温恒温热源向外不同介质发生热传导时的热学概念并进一步理解Fourier实验定律和温度场分布,来建立热传导偏微分方程组,当要考虑经济成本时必须进一步界定它的约束条件,同时确定最优的厚度组合就要从工艺角度考虑约束条件,很显然,解决这些问题的过程既是对所学热学知识更深入的理解,也是对热学知识最基本的创新。

  二是三人组成的团队成员能够承认和尊重自己与他人的不同特点,在融入团队的过程中学会怎样做好自身角色,分工与合作,如何共同努力完成项目,这是一种新型的自主学习方式,是适应个人与集体如何相处的最好方式,参与者能够感觉到更多的团队认同感和责任心及当项目完成后的自豪感。经跟踪调查发现,大部分经历过基于STEAM的数学建模创新教育训练后的学生,都将在以后其他的学习工作中不由自主地向着勇于钻研、求真务实、意志坚韧、团结协作的良性发展方向努力,这完全得益于在建模训练期间的团队合作学习方式,尤其是学生经历全国大学生数学建模竞赛的全过程后,他们都会有“一次参赛,终身受益”的切身体会。

  三是全国大学生数学建模竞赛自1992 年举办以来,赛题主要有工程技术、管理科学和社会热点问题简化而成,赛题也没有标准答案,评判以假设的合理性、建模的创造性、结果的正确性及表达的清晰性为标准,这些既充分开放、又有规则约束的竞赛方式,可以培养慎独、自律的良好道德品质,也充分体现了高校培养全面发展的人才方面的革新。

  四、思考与完善

  (一)完善课程体系。教学中提倡校本课程和建立资源库来整合多学科教学,以STEAM理念来促进数学建模创新教育,是在现有的课程和师资的条件下逐步摸索出来的改革举措,毕竟还在不断完善阶段,必然会有不小的困难,比如校本课程内容的选择范围、学科整合和界定模糊、校本课程的教学安排等问题都将要整体协调,目标就是:为学生提供多元课程选择,将学生置身于数学建模创新活动的中心,进而不断更新、完善基于STEAM的数学建模创新教育课程体系。

  (二)形成数学建模创新教育教师专业发展体系。STEAM教育理念的核心是各学科相互融通,学生要学会如何在解决问题时整合利用各种知识和技能。这一核心理念体现了STEAM教育的兼容性,决定了教师专业发展的延展和兼容性。因此,教师的可持续继续教育是开展数学建模创新教育的关键所在,如何对教师开展基于STEAM的建模系列学习活动、数学专业教师自身的专业拓展、数学专业教师与各其他学科教师的共同协作是目前亟需要解决的问题。

数学建模心得体会3

  说起心得最想说的一句话就是:“年年岁岁花相似,岁岁年年人不同”,去年的时候我也参加了建模培训,以为今年老师和去年讲的差不多,觉得自己不用怎么听就行了,反正内容差不多,其实不然,在此期间,确实有的老师和去年讲的题目一样,可是却发现去年对那些题目根本没有真的理解,还有去年很难理解的东西今年看着比去年好理解多了,有时心里想去年要是静下心来,说不定早理解了。今年只要愿意看,就会理解一些东西,发现并不是像自己想象的那样难。有时人不是被问题的本身打败,有时没进入就被自己打败了。

  今年培训的时候,我们见到了不同的面孔,接触了不同的老师,不同的风格。我是计教班的学生,培训的老师有的是数教班的老师,可能要不是建模培训,就无法一览他们的风采。我同学问我:“你在学校参加培训给你们钱不?”我说:“我们跟老师们学到了知识,我们不交钱就好了,怎么给我们钱呀?”的确,我们参加了培训,可能失掉打工的机会,但是我不后悔,在培训的过程中我学到了知识,我们还没有毕业,最重要的是提高自己各方面的知识。而不应该只看到眼前的一点利。

  在培训的过程中,我体验到了友情的温暖。那天我生病了,他们陪我一起看病,那给我力量的双手,那关爱的眼神,那关切的话语,那每一个平凡再也不能平凡的动作。我想不仅仅是一杯水的问题,这一切在脑海里都定格了,他们都是我一生的朋友!他们都说我们是大部队,确实,共同的兴趣,共同的'追求,永恒的友谊!

  总之,今年的培训,比去年学到了多了一点,其实学习是靠自己的,“师傅领进门,关键是靠自己嘛!”老师只是引导我们,要想让暑期培训的知识起到立竿见影的效果,自己可得好好的“消化”呀!不然的话会觉得用不上,不会用,消化的过程需要静下心来。这是我从去年的和今年的培训中得到的。

数学建模心得体会4

  这学期,我学习了数学建模这门课,我觉得他与其他科的不同是与现实联系密切,而且能引导我们把以前学得到的枯燥的数学知识应用到实际问题中去,用建模的思想、方法来解决实际问题,很神奇,而且也接触了一些计算机软件,使问题求解很快就出了答案。

  在学习的过程中,我获得了很多知识,对我有非常大的提高。同时我有了一些感想和体会。

  本来在学习数学的过程中就遇到过很多困难,感觉很枯燥,很难学,概念抽象、逻辑严密等等,所以我的学习积极性慢慢就降低了,而且不知道学了要怎么用,不知道现实生活中哪里到。通过学习了数学模型中的好多模型后,我发现数学应用的广泛性。数学模型是一种模拟,使用数学符号、数学式子、程序、图形等对实际课题本质属性的抽象而又简洁的刻画,他或能解释默写客观现象,或能预测未来的发展规律,或能为控制某一现象的发展提供某种意义下的最优策略或较好策略。数学模型一般并非现实问题的直接翻版,它的建立常常既需要人们对现实问题深入细微的观察和分析,又需要人们灵活巧妙地利用各种数学知识。这种应用知识从实际课题中抽象、提炼出数学模型的过程就称为数学建模。不论是用数学方法在科技和生产领域解决哪类实际问题,还是与其他学科相结合形成的交叉学科,首要的和关键的一步是建立研究对象的数学模型,并加以计算求解。数学建模和计算机技术在知识经济的作用可谓是如虎添翼。

  数学建模属于一门应用数学,学习这门课要求我们学会如何将实际问题经过分析、简化转化为个数学问题,然后用适用的数学方法去解决。数学建模是一种数学的思考方法,是运用数学的语言和方法,通过抽象、简化建立能近似刻画并解决实际问题的一种强有力地数学手段。在学习中,我知道了数学建模的过程,其过程如下:

  (1)模型准备:了解问题的实际背景,明确其实际意义,掌握对象的各种信息。用数学语言来描述问题。

  (2)模型假设:根据实际对象的特征和建模的目的,对问题进行必要的简化,并用精确地语言提出一些恰当的假设。

  (3)模型建立:在假设的`基础上,利用适当的数学工具来刻画各变量之间的数学关系,建立相应的数学结构。

  (4)模型求解:利用或取得的数据资料,对模型的所有参数做出计算。

  (5)模型分析:对所得的结果进行数学上的分析。

  (6)模型检验:将模型分析结果与实际情形进行比较,以此来验证模型的准确性、合理性和适用性。如果模型与实际较吻合,则要对计算结果给出其实际含义,并进行解释。如果模型与实际吻合较差,则应该修改假设,再次进行建模过程。

  数学模型既顺应时代发展的潮流,也符合教育改革的要求。对于数学教育而言,既应该让学生掌握准确快捷的计算方法和严密的逻辑推理,也需要培养学生用数学工具分析解决实际问题的意识和能力,传统的数学体系和内容无疑偏重于前者,而开设数学建模课程则是加强后者的一种尝试,数学建模的初衷是为了帮助大家提升分析问题,解决问题的能力。我认为学习数学模型的意义有如下几点:一学习数学模型我们可以参加数学建模竞赛,而数学建模竞赛是为了促进数学建模的发展而应运而生的,它可以培养大家的竞赛能力、抗压能力、问题设计能力、搜索资料的能力、计算机运用能力、论文写作与修改完善能力、语言表达能力、创新能力等科学综合素养,它让大家从传统的知识培养转变到能力的培养,让我们的思想追求有了质的变化!这也是我们现代所追求的;

  二学习数学可以提升我的逻辑思维能力和运算等抽象能力,但好多人觉得数学和实际遥不可及,可是呢,数学建模则成为了解决这种现象的杀手锏,因为数学建模就是为了培养大家的分析问题和分解决问题的能力。

  在学习了数学模型后,它所教给我们的不单是一些数学方面的,比如说一些数学计算软件,学习建模的同时,借用各种建模软件解决问题是必不可少的matlab,lingo,等都是非常方便的。数学模型是数学学习的新的方式,他为我们提供了自主学习的空间,有助于我们体验数学在解决实际问题中的价值和作用,体验数学与日常生化和其他学科的联系,体验综合运用知识和方法解决实际问题的过程,增强应用意识;

  而且数学模型还对我们有综合能力的培养、锻炼与提高。它培养了我们全面、多角度考虑问题的能力,使我们的逻辑推理能力和量化分析能力得到很好地锻炼和提高。而且我认为数学模型带给我的是发散性思维,各种研究方法和手段。教会我凡事要有自己的创新,自己的严密思维,不能局限于俗套。总之学习数学模型有利于激发我们的学习数学的兴趣,丰富我们学习数学探索的情感体验;

  有利于我们自觉体验、巩固所学的的数学知识。还锻炼了我们的耐心和意志力。

数学建模心得体会5

  这学期,我学习了数学建模这门课,我觉得他与其他科的不同是与现实联系密切,而且能引导我们把以前学得到的枯燥的数学知识应用到实际问题中去,用建模的思想、方法来解决实际问题,很神奇,而且也接触了一些计算机软件,使问题求解很快就出了答案。

  在学习的过程中,我获得了很多知识,对我有非常大的提高。同时我有了一些感想和体会。

  本来在学习数学的过程中就遇到过很多困难,感觉很枯燥,很难学,概念抽象、逻辑严密等等,所以我的学习积极性慢慢就降低了,而且不知道学了要怎么用,不知道现实生活中哪里到。通过学习了数学模型中的好多模型后,我发现数学应用的广泛性。数学模型是一种模拟,使用数学符号、数学式子、程序、图形等对实际课题本质属性的抽象而又简洁的刻画,他或能解释默写客观现象,或能预测未来的发展规律,或能为控制某一现象的发展提供某种意义下的最优策略或较好策略。数学模型一般并非现实问题的直接翻版,它的建立常常既需要人们对现实问题深入细微的观察和分析,又需要人们灵活巧妙地利用各种数学知识。这种应用知识从实际课题中抽象、提炼出数学模型的过程就称为数学建模。不论是用数学方法在科技和生产领域解决哪类实际问题,还

  是与其他学科相结合形成的交叉学科,首要的和关键的一步是建立研究对象的数学模型,并加以计算求解。数学建模和计算机技术在知识经济的作用可谓是如虎添翼。

  数学建模属于一门应用数学,学习这门课要求我们学会如何将实际问题经过分析、简化转化为个数学问题,然后用适用的数学方法去解决。数学建模是一种数学的思考方法,是运用数学的语言和方法,通过抽象、简化建立能近似刻画并解决实际问题的一种强有力地数学手段。在学习中,我知道了数学建模的过程,其过程如下:

  (1)模型准备:了解问题的实际背景,明确其实际意义,掌握对象的各种信息。用数学语言来描述问题。

  (2)模型假设:根据实际对象的特征和建模的目的,对问题进行必要的简化,并用精确地语言提出一些恰当的假设。

  (3)模型建立:在假设的基础上,利用适当的数学工具来刻画各变量之间的数学关系,建立相应的数学结构。

  (4)模型求解:利用或取得的数据资料,对模型的所有参数做出计算。

  (5)模型分析:对所得的结果进行数学上的分析。

  (6)模型检验:将模型分析结果与实际情形进行比较,以此来验证模型的准确性、合理性和适用性。如果模型与实际较吻合,则要对计算结果给出其实际含义,并进行解释。如果模型与实际吻合较差,则应该修改假设,再次进行建模过程。

  数学模型既顺应时代发展的潮流,也符合教育改革的要求。对于数学教育而言,既应该让学生掌握准确快捷的计算方法和严密的逻辑推理,也需要培养学生用数学工具分析解决实际问题的意识和能力,传统的数学教学体系和内容无疑偏重于前者,而开设数学建模课程则是加强后者的一种尝试,数学建模的初衷是为了帮助大家提升分析问题,解决问题的能力。我认为学习数学模型的意义有如下几点:一学习数学模型我们可以参加数学建模竞赛,而数学建模竞赛是为了促进数学建模的发展而应运而生的,它可以培养大家的竞赛能力、抗压能力、问题设计能力、搜索资料的能力、计算机运用能力、论文写作与修改完善能力、语言表达能力、创新能力等科学综合素养,它让大家从传统的知识培养转变到能力的培养,让我们的'思想追求有了质的变化!这也是我们现代教育所追求的;二学习数学可以提升我的逻辑思维能力和运算等抽象能力,但好多人觉得数学和实际遥不可及,可是呢,数学建模则成为了解决这种现象的杀手锏,因为数学建模就是为了培养大家的分析问题和分解决问题的能力。

  在学习了数学模型后,它所教给我们的不单是一些数学方面的知识,比如说一些数学计算软件,学习建模的同时,借用各种建模软件解决问题是必不可少的Matlab,Lingo,等都是非常方便的。数学模型是数学学习的新的方式,他为我们提供了自主学习的空间,有助于我们体验数学在解决实际问题中的价值和作用,体验数学与日常生化和其他学科的联系,体验综合运用知识和方

  法解决实际问题的过程,增强应用意识;而且数学模型还对我们有综合能力的培养、锻炼与提高。它培养了我们全面、多角度考虑问题的能力,使我们的逻辑推理能力和量化分析能力得到很好地锻炼和提高。而且我认为数学模型带给我的是发散性思维,各种研究方法和手段。教会我凡事要有自己的创新,自己的严密思维,不能局限于俗套。总之学习数学模型有利于激发我们的学习数学的兴趣,丰富我们学习数学探索的情感体验;有利于我们自觉体验、巩固所学的的数学知识。还锻炼了我们的耐心和意志力。

数学建模心得体会6

  在当今高科技与计算机技术日新月异且日益普及的社会里,高新技术的发展离不开数学的支持,没有良好的数学素养已无法实现工程技术的创新与突破。因此,如何在数学教育的过程中培养人们的数学素养,让人们学会用数学的知识与方法去处理实际问题,值得数学工作者的思考。大学生数学建模活动及全国大学生数学建模竞赛正是在这种形势下开展并发展起来的,其目的在于激励学生数学的积极性,提高建立数学模型和运用计算机技术解决实际问题的综合能力,拓宽学生的知识面,培养创造精神及合作意识,推动大学数学教学体系、教学内容和教学方法的改革。

  这项极富意义的活动,大学组队参加了全国大学生数学建模竞赛。为了更好地组织、指导此项活动,让更多的学生投入此项活动并从中受益,学生根据组织与指导的实践,对数学建模活动的作用与实施谈一些认识,以期起到深化数学教学改革、推动课程建设的作用。方法,去近似刻画、建立相应数学模型并加以解决的过程。为检验大学生数学建模的能力,而我国大学生数学建模竞赛。参加过数学建模活动的教师与学生普遍反映,数学建模活动既丰富了学生的课外生活,又培养了学生各方面的能力,同时也促进了大学数学教学的改革。通过数学建模活动,教师与学生对数学的作用有了进一步的认识。激发学生学习数学的兴趣。现今大学工科数学教学普遍存在内容多、学时少的情况,为此很多教师采取了牺牲应用、偏重理论讲解以完成教学进度的方法,使学生对数学的重要性认识不够,影响了学生学习数学的兴趣,很多学生进入专业课学习阶段才感觉到数学的重要,但为时已晚。

  数学建模活动及竞赛的题目是社会、经济和生产实践中经过适当简化的实际问题,体现了数学应用的广泛性;

  学生参与数学建模及竞赛活动,感受到了数学的生机与活力,感受到了对自己各方面能力的促进,从而激发起他们学习数学的兴趣。培养学生多方面的能力,培养综合应用数学知识及方法进行分析、推理、计算的能力。由于数学建模的过程是反复应用数学知识与方法对实际问题进行分析、推理与计算,以得出实际问题的最佳数学模型及模型最优解的过程,因而学生明显感到自己这一方面的能力在具体的建模过程中得到了较大提高学习数学建模也有一段时间了,说实话在还没学数学建模时,我以为这门课程是跟几何图形相关的,但在学了之后才发现完全理解错了,通过这段时间的学习使得我对数学建模有了一个全新的认识,数学建模就是当人们面对各种实际问题时,根据人们对问题的理解,完成对模型的假设,建立和确定求解问题的方法与途径,然后建立好方程组,然后再与计算机的软件相结合,最终得到该实际问题的最佳求解答案。

  以前在高中时学过些简单的线形规划,但那时都是些简单的问题,在列解出方程后通常只有两个未知数,但这明显不符合现实生活中的问题,因为往往涉及到一些实际生产问题时通常都是比较麻烦的,列出方程后的未知数也不可能只有两个,因此就要用到数学模型与计算机相结合来处理了。

  通过对数学建模的学习,使得我对数学有了全新的看法,也因此感觉到数学这门课程对于生产的利益是密不可分的,开展数学建模的学习是提升我们综合能力的好机会,使得我们不再是纸上谈兵了,并且也使得我们又多了一门技能。数学建模所解决的问题不是一个单一的数学问题,它要求我们除了有扎实的数学功底外,还需要我们去不断的查阅资料,并且还要能熟练的应用计算机的软件。所以它能极大的拓宽我们的知识面,这些知识也能为我们将来的工作打下坚实的基础,也让我理会到学习是不断发现真理的过程,并且它给我们带来的知识面不是任何专业都能涉及到的在学习数学建模的过程中,我充分的体会到了数学给人们带便利实在太大了,在涉及到现实的工业生产中,它能给企业的利益最大化,并且也能节省国内的能源,所以人类要是离开了数学建模,那后果真是不堪设想。其实数学建模对于我们并不陌生,在我们的日常生活和工作中,经常会用到有关建模的概念,而在学习数学建模以前,我们面对这些问题时,解决它的方法往往是一种习惯性的思维方式,只知道要这样做,却不知道为什么会这样做,现在我们这种陈旧的思考方式已经被数学建模转化成多层次,多角度的`从问题的本质出发的一种新颖的思维方式了,这种凝聚了多种优秀方法为一体的思考方式一旦被掌握了,它能转化成你自身的素质,并且能在你以后的生活和工作中继续发挥着作用的。

  数学建模是一种运用数学符号,数学式子,计算机程序等相结合的对实际问题做出规划而得出最佳的解决方法。不论是用数学方法解决在科技和生产领域解决哪类生产实际问题,还是与其他学科相结合形成交叉学科,首先和关键一步是建立研究对象的数学模型,并加以计算求解,我就简单说明一下具体的操作方法:首先是模型的准备,了解问题的实际背景,明确其实际意义,掌握对像的各种信息,用数学语言来描述问题。第二步是模型的假设,根据实际问题的特征和建模的目的,对问题做出必要的简化,并用精准的语言做出恰当的假设。第三步是模型的建立,在假设的基础上,用适当的数学工具来刻划各变量之间的数学关系,建立相应的数学架构。第四步是模型的求解,利用获取的数学资料,对模型所有参数做出计算。第五步是模型的分析,对所得的结果做出数学上的分析。第六步是模型检测,将模型的分析结果与实际情况进行比较,以此来确定模型的合理性,如果模型与实际比较吻合,则要对计算结果给出其实际含义,并做书解释。第七步是模型应用,应用的方式因问题的性质和建模的目的而异。

  在一般的工程技术领域,数学建模仍然大有用武之地,因此数学建模的普遍性和重要性不言而喻,由于新工业和新技术的不断涌现,提出了许多需要用数学建模来解决的问题,因此使得许多的问题迎刃而解,建立数学建模和计算机的软件,大量的代替了以前的复杂的计算问题。随着数学向这储如经济了等领域进行渗透,人们在计算如何使得经济利益最大化时,数学建模毫无疑问在这里面发挥出巨大的作用,当用数学方法研究这些领域中的定量关系时,数学建模就成为首要的。数学建模过程是一种创新过程,在思考方法和思维方式上与学习其他课程有着较大的区别,它需要我们在学习时能冷静的单独思考,并且要有一定的分析问题的能力。

  我相信随着科技的不断创新发展,数学建模在其中的地位会越来越高,所以对于一个大学生来说,学好数学建模固然是非常重要的。

数学建模心得体会7

  数学模型作为对实际事物的一种数学抽象或数学简化,其应用性强的特点使其影响正在向更广阔的领域拓展、延伸。因适应新时期应用型、创新型人才培养的需要,数学建模受到了高等院校的重视,相应的课程建设计划得到了实施,竞赛活动得到了开展。基于数学建模培养学生解决实际问题能力的优势,通过数学建模来提升大学生的综合素质,已成为一个逐步引起关注的教育教学问题。

  一、数学建模的内涵及其应用趋势

  《数学课程标准(实验)》中提出:“数学探究、数学建模、数学文化是贯穿于整个高中数学课程的重要内容……,高中阶段至少应安排一次较为完整的数学探究、数学建模活动。”对于数学建模的理解,可以说它是一种数学技术,一种数学的思考方法。它是“对实际的现象通过心智活动构造出能抓住其重要且有用的特征的表示,常常是形象化的或符号的数学表示”。从科学、工程、经济、管理等角度来看,数学建模就是用数学的语言和方法,通过抽象、简化建立能近似刻画并“解决”实际问题的一种强有力的数学工具。

  通俗地说,数学建模就是建立数学模型的过程。几乎一切应用科学的基础都是数学建模,凡是要用数学解决的实际问题也都是通过数学建模的过程来实现的。就其趋势而言,其应用范围越来越广,并在大学生数学素质培养中肩负着重要使命。尤其是 20 世纪中叶计算机和其他技术突飞猛进的发展,给数学建模以极大的推动,数学建模也极大地拓展了数学的应用范围。曾经有位外国学者说过:“一切科学和工程技术人员的教育必须包括数学和计算数学的更多内容。数学建模和与之相伴的计算正在成为工程设计中的关键工具。”正因为数学通过数学建模的过程能对事实上很混乱的东西形成概念的显性化和理想化,数学建模和与之相伴的计算正在成为工程设计中的关键工具。因而了解和一定程度掌握并应用数学建模的思想和方法应当成为当代大学生必备的素质。对绝大多数学生来说,这种素质的初步形成与《高等数学》及其相关学科课程的学习有着十分密切的关系。

  二、数学建模与数学综合素质提升

  当今的数学教育界,对什么是“数学素质”,有过深入广泛的讨论。经典的说法认为,数学是一门研究客观世界中数量关系和空间形式的科学,因而,人们认识事物的“数”、“形”属性及其处理相应关系的悟性和潜能就是数学素质。一是抽取事物“数”、“形”属性的敏感性。即注意事物数量方面的特点及其变化,从数据的定性定量分析中梳理和发现规律的意识和能力。二是数理逻辑推理的能力。即数学作为思维的体操、锻炼理性思维的必由之路,可提高学生的逻辑思维能力和推理能力。三是数学的语言表达能力。 即通过数学训练所获得的运用数学符号进行表达和思考、求助与追问的能力。四是数学建模的能力。即在掌握数学概念、方法、原理的基础上,运用数学知识处理复杂问题的能力。五是数学想象力。即在主动探索的基础上获得的洞察力和联想、类比能力。因此,数学建模能力已经成为数学综合素质的重要内容。那么,数学建模对于学生的数学综合素质的提升表现在哪些方面呢?

  (一)拓展学生知识面,解决“为‘迁移’而教”的问题。数学建模是指针对所考察的实际问题构造出相应的数学模型,通过对数学模型的求解,使问题得以解决的数学方法。数学建模教学与其他数学课程的教学相比,具有难度大、涉及面广、形式灵活的特点,对学生综合素质有较高的要求。因此,要使数学建模教学取得良好的效果,应该给学生讲授解决数学建模问题常用的知识和方法,在不打乱正常教学秩序的前提下,周密安排数学建模教学活动,为将来知识的“迁移”打下基础。具体可将活动分为三个阶段:第一阶段是补充知识,重点介绍实用的数学理论和数学方法,不讲授抽象的数学推导和繁复的数学计算,有些内容还可以安排学生自学,以此调动学生的学习积极性,发挥他们的潜能;第二阶段是编程训练,强化数学软件包MATLAB编程,突出重要数学算法的训练;第三阶段是数学建模专题训练,从小问题入手,由浅入深地训练,使学生体会和学习应用数学的技巧,逐步训练学生用数学知识解决实际问题,掌握数学建模的思想和方法。

  (二)发挥主观能动性,强化学生自主学习能力。数学建模是一种对实际的现象通过心智活动构造出能抓住其重要且有用的特征的表示,需要学生发挥主观能动性,通过主体心智活动的参与,实现问题的建构和解决。在大学,自主学习是学生学习的一种重要方式。大学生课外知识的获得、参与科研活动、撰写毕业论文和进行毕业设计等等,都是在教师的指导下的自主学习,因此,自主学习的意识和能力培养成为提升大学生综合素质的`关键。数学建模对于强化学生自主学习能力,培养数学综合素质无疑具有典型意义。由于数学建模对知识掌握系统性的要求,而这些系统的知识又不可能系统地获得,很多参与数学建模学习和研究的学生,都深感其对提高自主学习能力的重要性,并从中汲取不竭的动力,进行后续的学习和研究。

  (三)把握数学建模的内在特质,培养学生的创新能力。创新能力是指利用自己已有的知识和经验,在个性品质支持下,新颖而独特地提出问题、解决问题,并由此产生有价值的新思想、新方法、新成果。数学建模具有创新的内在特质,其本身就是一个创新的过程。现实生产和生活中,面临的每一个实际问题往往都比较复杂,影响它的因素很多,从问题的提出、模型的建构、结果的检验等各个方面都需要创新活动的参与,建立数学模型需以创新精神为动力,不断激发学生的创造力和想象力。因此,在数学建模活动中,要鼓励学生勤于思考、大胆实践,尝试运用多种数学方法描述实际问题,不断地修改和完善模型,不断地积累经验,逐步提高学生分析问题和解决问题的能力。持续创新是知识经济时代的重要特征,高等院校应坚持把数学建模教育作为素质培养的载体,大力培养学生的创新精神、创新勇气和创新能力,使其真正成为创新的生力军。?

  (四)促进合作意识养成,培养团队协作精神。 适应时代的发展,越来越多的高校将参加数学建模竞赛作为高校教学改革和培养科技人才的重要途径。数学建模比赛的过程就是培养学生全局意识、角色意识、合作意识的过程,也是一个塑造学生良好个性的过程。数学建模竞赛采取多人组队、明确时间、完成规定任务的形式进行。一个数学建模任务的完成,往往需要成员之间的讨论、修改、综合,既有分工、又有合作,是集体智慧的结晶。竞赛期间学生可以自由地查阅资料、调查研究,使用必要的计算机软件和互联网。作为对学生的一种综合训练,学生要解决建模问题,必须有足够的知识,并有将其抽象成数学问题、有良好的数学素养,有熟练的计算机应用能力,还要有较好的写作能力,这些知识和能力要素的取得,往往来自于一个坚强的团队。具有一定规模的建模问题一般都不能由个人独立完成,只有通过合作才能顺利完成,没有全局观念和协作精神作为支撑,要完成好建模任务是非常困难的。

  三、在数学建模的教与学中提升学生数学素质

  数学建模课程的教学不是传统意义上的数学课,它不是“学数学”,而是“学着用数学”。它是以现实世界为研究对象,教我们在哪里用数学,怎样用数学。对模型的探索,没有现成的普遍适用的准则和技巧,需要成熟的经验见解和灵巧的简化手段,需要合理的假设,丰富的想象力,敏锐的洞察力。直觉和灵感往往也起着不可忽视的作用。因此,在数学建模教学中要把握“精髓”,侧重于给予学生一种综合素质的训练,培养学生多方面的能力。

  (一)将数学建模思想渗透到教学中去。把数学建模的思想和方法有机地融入“高等数学”等课程教学是一门“技术含量”很高的艺术。其困难之一就是数学建模往往与具体的数学问题和方法,可能是很深奥的数学问题和方法紧密相连。因此,怎样精选只涉及较为初等的数学理论和方法而又能体现数学建模精神,既能吸引学生而且学生又有可能遭遇的案例,并将其融入课程教学中十分重要。特别要重视在教学中训练学生的“双向翻译”的能力。这一能力的要求,简单地说,就是把实际问题用数学语言翻译为明确的数学问题,再把数学问题得到解决的结论或数学成果翻译为通俗的大众化的语言。“双向翻译”对于有效应用数学建模的思想和方法,是一个极为关键的步骤,权威的专家多次强调了这一点。建模的力量就在于“通过把物质对象对应到认定到能‘表示’这些物质对象的数学对象以及把控制前者的规律对应到数学对象之间的数学关系,就能构造所研究的情形的数学建模;这样,把原来的问题翻译为数学问题,如果能以精确或近似方法求解此数学问题,就可以再把所得到的解翻译回去,从而解出原先提出的问题。”

  (二)数学建模教学中重视各种技术手段的使用。在“高等数学”等课程的教和学中,使用技术手段,尤其是数学软件,只是时间的问题,尽管关于技术手段的好与坏还仍有争议。企图用技术手段来替代个人刻苦努力的学习过程,只会误导学生。但决不能因此彻底地排斥技术手段, 这是一个“度”的问题。对于数学建模的教师来说,技术手段既可能成为科研和教学研究的有力工具, 也可以通过教学实践来研究怎样使用它们。数学建模课程教学中涉及数理统计、系统工程、图论、微分方程、计算方法、模糊数学等多科性内容,这些作为背景性知识和能力的内容,一个好的教师一定要在教学中把它作为启发性的基本概念和方法介绍给学生。而这些内容要取得基于良好引导效果的教学成效,就必须使用包括数学软件在内的多种技术手段,以此来培养学生兴趣,引导学生自学,挖掘学生的学习潜能。

  (三)确立“学生是中心,教师是关键”的原则。所有的教学活动都是为了培养学生,都要以学生为中心来进行, 这是理所当然的。数学建模的教学要改变以往教师为中心、知识传授为主的传统教学模式,确立实验为基础、学生为中心、综合素质培养为目标的教学新模式。然而,教学活动是在教师的领导和指导下进行的, 因而,教师是关键。在教学过程中教师对问题设计、启发提问、思路引导、能力培养方面承担重要职责,教师能否充满感情地、循循善诱、深入浅出地开展数学建模的教学就成了学生学习成效的关键,教师的业务能力、敬业精神、个人风格等发挥着非常重要的作用。因此,作为数学建模的教师,把数学建模思想运用在高等数学教学中的意义,就在于在整个教学中给了学生一个完整的数学,学生的思维和推理能力受到了一次全面的训练,使学生不仅增长了数学知识,而且学到了应用数学解决实际问题的本领。

数学建模心得体会8

  一年一度的全国数学建模大赛在今年的9 月22 日上午8 点拉开战幕,各队将在3 天72 小时内对一个现实中的实际问题进行模型建立,求解和分析,确定题目后,我们队三人分头行动,一人去图书馆查阅资料,一人在网上搜索相关信息,一人建立模型,通过三人的努力,在前两天中建立出两个模型并编程求解,经过艰苦的奋斗,终于在第三天完成了论文的写作,在这三天里我感触很深,现将写出,希望与大家交流。

  1. 团队精神:团队精神是数学建模是否取得好成绩的最重要的因素,一队三个人要相互支持,相互鼓励。切勿自己只管自己的一部分(数学好的只管建模,计算机好的只管编程,写作好的只管论文写作),很多时候,一个人的思考是不全面的,只有大家一起讨论才有可能把问题搞清楚,因此无论做任何板块,三个人要一起齐心才行,只靠一个人的力量,要在三天之内写出一篇高水平的文章几乎是不可能的。

  2. 有影响力的leader:在比赛中,leader 是很重要的,他的作用就相当与计算机中的cpu,是全队的核心,如果一个队的leader 不得力,往往影响一个队的正常发挥,就拿选题来说,有人想做a 题,有人想做b 题,如果争论一天都未确定方案的话,可能就没有足够时间完成一篇论文了,又比如,当队中有人信心动摇时(特别是第三天,人可能已经心力交瘁了),leader 应发挥其作用,让整个队伍重整信心,否则可能导致队伍的前功尽弃。

  3. 合理的时间安排:做任何事情,合理的时间安排非常重要,建模也是一样,事先要做好一个规划,建模一共分十个板块(摘要,问题提出,模型假设,问题分析,模型假设,模型建立,模型求解,结果分析,模型的评价与推广,参考文献,附录)。你每天要做完哪几个板块事先要确定好,这样做才会使自己游刃有余,保证在规定时间内完成论文,以避免由于时间上的不妥,以致于最后无法完成论文。

  4. 正确的论文格式:论文属于科学性的文章,它有严格的书写格式规范,因此一篇好的论文一定要有正确的格式,就拿摘要来说吧,它要包括6 要素(问题,方法,模型,算法,结论,特色),它是一篇论文的概括,摘要的好坏将决定你的论文是否吸引评委的目光,但听阅卷老师说,这次有些论文的摘要里出现了大量的图表和程序,这都是不符合论文格式的,这种论文也不会取得好成绩,因此我们写论文时要端正态度,注意书写格式。

  5. 论文的写作:我个人认为论文的写作是至关重要的,其实大家最后的模型和结果都差不多,为什么有些队可以送全国,有些队可以拿省奖,而有些队却什么都拿不到,这关键在于论文的写作上面。一篇好的论文首先读上去便使人感到逻辑清晰,有条例性,能打动评委;

  其次,论文在语言上的表述也很重要,要注意用词的准确性;

  另外,一篇好的论文应有闪光点,有自己的特色,有自己的想法和思考在里面,总之,论文写作的好坏将直接影响到成绩的优劣。

  6. 算法的'设计:算法的设计的好坏将直接影响运算速度的快慢,建议大家多用数学软件(mathematice,matlab,maple, mathcad,lindo,lingo,sas 等),这里提供十种数学建模常用算法,仅供参考:

  1、 蒙特卡罗算法(该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟可以来检验自己模型的正确性,是比赛时必用的方法)

  2、数据拟合、参数估计、插值等数据处理算法(比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用matlab 作为工具)

  3、线性规划、整数规划、多元规划、二次规划等规划类问题(建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用lindo、lingo 软件实现)

  4、图论算法(这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备)

  5、动态规划、回溯搜索、分治算法、分支定界等计算机算法(这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中)

  6、最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法(这些问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用)

  7、网格算法和穷举法(网格算法和穷举法都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具)

  8、一些连续离散化方法(很多问题都是实际来的,数据可以是连续的,而计算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的)

  9、数值分析算法(如果在比赛中采用高级语言进行编程的话,那一些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用)

  10、图象处理算法(赛题中有一类问题与图形有关,即使与图形无关,论文中也应该要不乏图片的,这些图形如何展示以及如何处理就是需要解决的问题,通常使用matlab 进行处理)

数学建模心得体会9

  首段:引入技能大赛,介绍参赛背景和目的

  在如今竞争激烈的社会中,掌握一项特定的技能尤为重要。为了提高自己的专业水平,我参加了一场技能大赛,并取得了不错的成绩。这次比赛是为了鼓励学员们在实践中运用所学知识,展现个人才能。参赛期间,我深感自己技能的不足,但通过总结和反思,我也收获了许多宝贵的经验和教训。

  第二段:谈论准备工作和挑战

  为了参加技能大赛,我进行了充分的准备工作。首先,我从基础理论开始巩固自己的知识,并通过与老师和同学的交流来拓宽自己的视野。其次,我积极寻找实践机会,参与到各类实际项目中,提高自己的技能技巧。然而,参赛过程中也遇到了许多挑战。时间的压力、意外的状况以及紧张情绪都成为了我突破的阻碍。但是,我并没有气馁,而是利用这些挑战来激励自己更好地提高。

  第三段:总结得失和改进措施

  参加技能大赛的过程中,我深切感受到了自己的不足之处。在表现中,我发现自己的沟通能力还有待提高,有时候表达不够清晰,给工作组合作带来了麻烦。另外,我也意识到自己的时间管理能力还不够强,有时候会陷入紧迫感中而导致困惑。为了改进这些问题,我决定进行更多的沟通和交流训练,并制定更合理的工作计划来管理时间。同时,我也认识到了团队合作的重要性,下次参加技能大赛时我将更加注重与团队成员的合作,互相学习和取长补短。

  第四段:分享心得收获

  参赛后,我不仅仅对自己的技能水平有了更深入的`认识,还结识了许多志同道合的朋友。在与其他选手的交流中,我了解到每个人都有自己的强项和优势,而且每个行业都需要各种各样的技能。这让我更加深信,只有不断学习和提升自己的技能,才能在竞争激烈的就业市场中立于不败之地。同时,通过与其他选手的比拼,我也获得了许多宝贵的经验,学会了如何从失败中学习,并不断调整自己的思路和方法。

  结尾段:展望未来发展和对技能大赛的期望(200字)。

  参加技能大赛让我尝到了成功的滋味,也让我认识到自己的不足之处。在未来的日子里,我将继续努力学习和提高自己的技能,扩展自己的职业发展空间。同时,我也期待着参加更多的技能大赛,以展现自己的才能和努力。我相信通过这些比赛,我将不断突破自己,并取得更大的成就。

  通过这次技能大赛,我不仅仅提高了自己的技能水平,也体会到了实践的重要性。我深信,只有通过实践,我们才能真正理解并掌握所学的知识。在以后的学习和工作中,我将继续保持积极热情,坚持不懈地提升自己的技能,为自己的未来铺就一条通往成功的康庄大道。

数学建模心得体会10

  刚参加工作那阵子就接触到“建模”这个概念,也曾对之有过关注和尝试,但终因功力不济,未能持之以恒给力研究,也就一阵烟云飘过了一下罢了。

  许校的讲座再次激起了我们对这个曾经的相识思考的热情。

  同样一个名词,但在新的时代背景下许校赋予了其更多新的内涵。

  首先是对“建模”的理解差异。那时更多的是一种短视或者说应试背景下的行为,“建模”的理解就是给学生一个固定的模式的东西,通过教学行为让学生接受而成为其解决问题的一种工具;而许校的“建模”更多的是一种动态的或者说是一种有型而又不可僵化定型的东西,应该是可以助力学生发展最终可以成为学生数学素养的一部分。

  其次,对于如何建模我们可以看到更多不同。过去更多的是一种对数学模型简单重复的强化行为,显得单调而生硬;而许校的“建模”则更多的强调不同层面上引导学生通过“悟”、“辨”、“用”等环节,让学生立体式全方位的理解模型、建立模型,从而避免了过去那种“死模”而将学生“模死”的现象。

  许校的“模”,强调应该是一个利于学生可发展的模,可以进入到无意识和骨子里,成为学生真正的数学素养,最终能够跳出模,从而达到模而不模的去形式化境界。

数学建模是一个经历观察、思考、归类、抽象与的.过程,也是一个信息捕捉、筛选、整理的过程,更是一个思想与方法的产生与选择的过程。它给学生再现了一种“微型科研”的过程。数学建模教学有利于激发学生学习数学的兴趣,丰富学生数学探索的情感体验;有利于学生自觉检验、巩固所学的数学知识,促进知识的深化、发展;有利于学生体会和感悟数学思想方法。同时教师自身具备数学模型的构建意识与能力,才能指导和要求学生通过主动思维,自主构建有效的数学模型,从而使数学课堂彰显科学的魅力。

  为了使描述更具科学性,逻辑性,客观性和可重复性,人们采用一种普遍认为比较严格的语言来描述各种现象,这种语言就是数学。使用数学语言描述的事物就称为数学模型。有时候我们需要做一些实验,但这些实验往往用抽象出来了的数学模型作为实际物体的代替而进行相应的实验,实验本身也是实际操作的一种理论替代。 1.只有经历这样的探索过程,数学的思想、方法才能沉积、凝聚,从而使知识具有更大的智慧价值。动手实践、自主探索与合作交流是学生学习数学的重要方式。学生的数学学习活动应当是一个主动、活泼的、生动和富有个性的过程。因此,在教学时我们要善于引导学生自主探索、合作交流,对学习过程、学习材料、学习发现主动归纳、提升,力求建构出人人都能理解的数学模型。

  教师不应只是“讲演者”,而应不时扮演下列角色:参谋提一些求解的建议,提供可参考的信息,但并不代替学生做出决断。询问者故作不知,问原因、找漏洞,督促学生弄清楚、说明白,完成进度。仲裁者和鉴赏者评判学生工作成果的价值、意义、优劣,鼓励学生有创造性的想法和作法。

数学建模心得体会11

  转眼之间,一个月的集训悄悄过去,仿佛又经历了一次难以忘记的军训。无疑,这对我今后的发展产生了重大影响。因为不仅我的意志力从中得到磨练,而且思维能力、学习能力更进异步得到提高,这次集训大大挖掘了我的潜力,我想者会让我更加从容的面对以后的诸多考验,如考研等。期间每一天都过的十分忙碌,十分充实。一开始感觉时间过得很慢,后来就觉得根本没法让人去感觉了。从收集资料、理解题义到着手建模,编程计算到写论文,每一步都凝聚我们辛勤的.汗水。尽管,我知道有几个模型做得并不好,但我们始终没放弃,抱者以后一定会作的很好的想法继续着。

  说实话,一开始建模,我没什么感觉,就像做作业一样,但后来,我逐渐认真积极了,直到23好,我才真正感到了压力,巨大的压力。一方面,如果我没有机会参加全国大赛,那将是一个难以弥补的遗憾;如果去参加全国大赛而没获奖,那将会沉重的打击我的自信心;另一方面,我十分清楚自己的势力同全国一等奖之间的差距。因此,我产生了一个想法,不管结果怎么样,从现在到建模集训结束,我争取再多学一些东西。这样我才感觉找回了真正的自己。总之,我从中受到了难得的启发和教育。

数学建模心得体会12

  从小就对数学深感兴趣,在大二下学期时,辅导员在群里给了数学建模的参赛信息。并再三强调不能吃苦的,不用去参加了。想到自己是经管的学生,学习的数学应该没有土建、电气和机械的学生多。第一天还在犹豫是否要去,看着截止时间马上就要到了,自己想到自己做事一直就是从始而终,最后还是报名参加了。

  第一次参加培训时,我记得一个大教室座无虚席,甚至还有很多人站着听老师讲课。后来人越来越少,到最后只有18个队参加,而自己就在这18个队中,想着自己从开始一直坚持到现在,还是很佩服自己的。经过大二下每周一次的集合培训,到暑假将近一个月的培训,最终在九月中旬参加全国大学生数学建模大赛。这其中的坚持,恐怕只有自己经历了才会有更深的体验。回忆起这一段时间,我发现到现在为止,我已经学到的很多,那三天无所畏惧的奋战已成我今后最宝贵的一笔财富。这让我以后无论遇见什么样的难题,都能拿出满分信心去面对,真的很感谢当初自己的选择。期间院里辅导员以及书记的到来也给了我们很大的鼓舞,感谢学校提供的机会,高老师从始至终的培训。

  从这次数学建模中,我深刻的体会到了建模不仅要有扎实的数学知识,惊人的自学能力外,还要有广阔的知识面,灵活的运用知识的能力,以及要有合作精神,更重要的是要有永不放弃的心!——nevergiveup!正是因为这颗“永不放弃”的心,我才能在数学建模的舞台上尽情舞动,尽情发挥。当我为解不出题目而苦恼的时候,当我为无法灵活运用知识的时候,我都会默默鼓励自己,告诉自己不要轻言放弃。

  自从进大学以来,我一直努力,希望自己做什么事都不要放弃,一直坚持着,只要自己能做好的事,该做的事就去做,并且希望做的很好!整天忙忙碌碌的.,富有憧憬的大一就这么悄悄离去了!兴许没有丢弃的是那种坚持到底的韧劲!伴随着我走过接下来的日子,我们数模的队伍人数的变化,在中间最艰苦的那段日子里;大家的心摇摇欲坠,我的两个组员也差点离开这个团队!那时的我虽然没有离开的想法,但对最后的得奖已经不抱很大的希望,最多的念头就是:参加了就一直坚持下去,只要坚持到最后,我们就一定会有收获。

  随着一个又一个组员的放弃,一个又一个队友的离开,我们的队伍越来小,还有一些客观上的因素:这些日子,让我体会最深的就是:如何去安排自己的位置,如何正确的看待自己;我不是最笨的也不是最强的,合作的力量是不可估量的。

  参加数模也使我认识到团队精神的强大。团队精神是数学建模是否取得好成绩的最重要的因素,一队三个人要相互支持,相互鼓励。切勿自己只管自己的一部分(数学好的只管建模,计算机好的只管编程,写作好的只管论文写作),很多时候,一个人的思考是不全面的,只有大家一起讨论才有可能把问题搞清楚,因此无论做任何板块,三个人要一起齐心才行,只靠一个人的力量,要在三天之内写出一篇高水平的文章几乎是不可能的。很是怀念和队友对问题的探讨,那种全神贯注的探索。

  对于数学建模比赛的题目。我们面对的是没有现成答案,没有固定求解方法,没有指定参考书,没有规定的数学工具和手段,没有成型的可照抄照搬的问题,从实际问题开始,要求我们进行自主的思考和研究。建模中,我们以往所受到的数学训练,所吸收的数学思想,所培养的合作精神,都将发挥巨大作用,亲身体验着数学的创造和发现的过程,从而取得在传统数学教学的课堂里无法获得的用数学解决实际问题的宝贵经验。数学建模就是一种数学技术,它是针对各种各样的实际问题,运用数学的语言和方法进行抽象、量化、简化为合理的数学模型,并应用计算机技术进行求解,给出解决方案的全过程。数学建模需要一种意识,一种刻骨铭心的应用意识、挑战意识、创新意识和现实而科学的态度。

  三天的竞赛时间对于竞赛来说是很短的,在那三天,我和队友所关注的只有竞赛的题目,通过各种方法查找知识点。再一次一次的试错中,我们依然坚持下一次的尝试。当你花了几个小时发现得出的结果是不合人意时,是会感到很沮丧的。但你也会体会到做出一小问后,那种发自内心的欢悦。这时的你就会感觉之前的试错都是值得的。这其中的起起落落才会给自己留下最深的影响吧。当你凌晨四点醒来,走到外面走廊,看到四点的校园也是一番不错的景色,在和队友讨论一番之后,突然就想到一个解题的方法,就会立马兴奋的做到电脑前,开始建立模型,写一写算法。纵然深夜,兴致却早已击败睡眠的意念。文末附一张凌晨拍的东八楼外的景色。数模竞赛已经落下帷幕,而我从中学到的经验以及坚持的心态将会一直支持着我,走的更远更宽更成功。

数学建模心得体会13

  一、数学建模推广月活动。

  为了让更多的同学了解数学建模,以便于本协会其他活动的顺利开展,在新生报到后,我们以高教社杯全国大学生数学建模竞赛为契机,通过宣传和组织,展开数学建模推广活动,向广大同学介绍数学建模相关知识,推广月的主要内容有:数学建模竞赛的介绍,数学建模所涉及的数学知识的介绍,数学建模相关软件的推广等。推广月活动的主要形式是:横幅、宣传材料、人工咨询等。

  二、组织学生参加每年高教社杯全国大学生数学建模竞赛。

  一年一度的高教社杯大学生数学建模竞赛将于9月15日左右如期举行,届时本协会将在相关指导老师的统一安排下,组织参赛队伍参加此次大赛,力争为我校争取荣誉。

  三、年度会员招收工作。

  在校社团管理部统一安排的时间,展开新会员招收工作,主要针对大一新生,并适量吸收大二学生,为协会增加一些新鲜力量,为协会的长足发展注入新的活力,招新活动将持续两到三天,在两校区同时进行。

  四、干事招聘会。

  在招新活动结束后,我们将在全校范围内的,由协会内部主要负责人组成评审团,通过公开招聘的形式,招收一批具有突出能力的新干事,组成一支新的工作人员队伍,为更好的开展协会活动和服务会员打下基础。招收新干事部门有:办公室、外联部、实践部、宣传部、科研部、网络信息部。

  五、数学建模专题讲座。

  邀请本协会指导老师廖虎教授、余庆红、吴文海等,举办三到四次数学建模专题讲座,为广大同学提供一个了解数学建模、学习建模知识的平台。

  六、会员大会。

  拟于每年10月下旬和12月上旬,召开两次西安电力高等专科学校数学建模协会会员大会;会间将有请协会的辅导老师:廖虎教授、余庆红、吴文

  数学建模学习体会(2) 海等和其他兄弟协会。届时几位辅导老师将介绍数学建模的意义和魅力,并讲述大学生数学建模大赛的来历、发展、参赛形式和我校每届参与大赛的获奖情况等,让新会员更快的认识数学建模,并激发其学习数学的积极性,让其更好的参与以后协会的活动。

  七、西安电力高等专科学校第二届大学生数学建模竞赛。

  为进一步提升我校学生参与数学建模的积极性,提高数学建模的广泛参与性,我们拟于每年11月中旬举办西安电力高等专科学校第二届大学生数学建模竞赛;大赛将分为4组,针对不同层次的大学生评选出获奖作品。比赛结束之后将举行颁奖大会,为各个参赛组获奖选手颁发奖品。

  八、数学建模经验交流会。

  为加深我校学生对数学建模知识的`了解,帮助同学们参与到数学建模事业中去,我们拟邀请全国大学生数学建模竞赛获奖选手与协会会员一起交流比赛经验,并由获奖选手回答提问。

  九、大学生数学建模协会网站的建设与信息服务。

  在有关领导的关心帮助下,本协会的网站本着服务会员、交流心得、学习经验、传播知识的原则,对各种数学建模相关知识(论文、软件)进行发布,对校园内各种相关新闻信息进行报道,对各种同学们关心的数学问题进行讨论。本学期,我们将利用网站这一优势,我们将充分利用网络信息传递速度快的特点,在发挥网站宣传平台这一作用的基础上,着手举办一些时代性强、参与性强、灵活生动的网络活动。 心得体会范文

数学建模心得体会14

  在小学数学教学中融入数学建模思想,一定要把握好数学建模的内涵,不能只看型丢弃核。在建模活动过程中注意遵循小学生的儿童性、认知水平以及思维特点。通过创设的问题情境让建模思想渗透进去,让小学生们在实践、探究、运用中形成一种建模技能,建立建模的思维方法,懂得建模的价值和重要性,合理定位小学数学建模。

  数学是一门研究数量关系、空间形式的科学。主要特点是概念的抽象性、逻辑的严密性、结论的明确性、体系的完整性、应用的广泛性。无论是研究数学还是学习数学,其目的是将数学应用于社会服务于社会。实现此目的的途径是把实际问题与数学联系起来,通过数学模型来实现的。“模型化是数学中的一个基本概念,它处于所有的数学应用之心脏”。建立数学模型是数学学习的重要部分。数学建模的特殊地位与作用,早已从大学向基础教育延伸。小学阶段展开数学建模是否可行,日常的小学数学教学与贯彻建模思想的小学数学教学又有什么差别,是一个值得深究的问题。

  数学建模的核心本质是它更突出显现对原始问题的分析、假设、抽象;更突出显现数学教学工具和教学方法以及教学模型的取舍、分析加工过程。数学模型的分析――求解――验证――再分析――修改――假设――再求解的迭代过程更完整地表现出学生学习数学和应用数学解决实际问题的关系。这样一个迭代的过程,再现出一种“微型的科研过程”,使学生耳目一新。这不仅促进学生们数学意识的加强和数学素养的提高,更重要的是促进学生们数学品质的提升。无论是高校还是初级小学,数学建模的价值对学生的学习都会产生积极的影响,所以在数学教学中要贯彻数学建模思想,关键问题是如何才能把握好数学建模的内涵,如何才能展开一个完美过程,如何科学定位这是一个需要深思的问题。下面从数学建模的'实体、目标、原则、途径做一些讨论。

  一、建模主体的儿童性

  在初级学校数学建模的主体是小学生,知识运用的特点是小学数学,因此在小学展开数学建模,创设问题情境,一定注意掌握复杂性的适度,根基于学生“最近发展区”,还要以“看得见、够得着”为原则,直抵学生的“最优发展区”。要合理定位数学建模的难度、深度、温度、适度,不仅要学生认真思考,积极探索,又要学生经过探索发现问题,并能运用所学知识解决问题。

  1基于建模主体的生活经验。数学建模提供一个完整、真实的问题情境,将现实生活中与数学有关的素材及时融入到学习课堂中,把教材内容结合生活实际、社会热点、自然环境等与数学问题有关系的各种因素,巧妙地转化为儿童日常生活数学问题的火热思考,把其当做解决问题的支撑物来启动教学,使学生产生学习兴趣,让学生从身边具体的情境中发现问题、提出问题、解决问题;让学生认识到问题的价值性;让学生抓住问题的锚桩,不失时机的激发学生的探索兴趣和生活经验,促使学生用积累的经验感受问题情境中隐含的数学问题,使学生尽快将生活问题抽象成数学问题,尽知数学模型的存在。

  2基于建模主体的认知水平。基础教育实施数学建模,要因材施教,循序渐进不能急功近利。首先要适合学生的年龄特征,还要具有一定的挑战性,激发他们学习数学的兴趣;其次是遵循和重视学生的认知规律和认知水平,问题的难易程度要适切;再次是适合学生发展的差异,尊重学生的个性,同时结合学生的实际一定要分层次逐步推进实施;最后是把握数学建模中学生的认知、情感、思维等的特点。这样不仅有利于儿童的主动参与,更有利于调动学生的主动探索的积极性,有利于培养他们的进取精神创造意识。

  3基于建模主体思维特点。我们在小学数学教学活动过程中,教师应采取行之有效的策略,加强数学建模思想的渗透,让学生通过建模形成一种技能,形成一种数学的思维方法,并能用这些数学的思维方法,分析问题、解决问题,这才是我们的根本目的。如:小学数学“平均数的认识”这一讲,平均数对小学生来说是抽象的知识,并且这个抽象的知识隐藏在具体的问题情境中。教师要利用具体的问题情境,让学生多次进行评判解读、整理数据,产生思维冲突,从而推进数学思考的有序进行,这种从具体的问题情境中抽出平均数这一数学问题的过程,就是一次建模的过程,也是学生对平均数意义初步感知的过程。在小学数学教学中,渗透适合学生水平的数学建模过程与方法,是让课堂更为灵动更为精彩的活动。

  二、建模目标的指向性

  在小学教育阶段,“数学建模”教学一不是培养科学前沿的高级人才和数学建模竞赛拔尖生,二不是纯粹为了与初、高中衔接进行的数学建模法的训练,而是为了提升小学生的数学素养为目的。让小学生在生活中能自觉的、积极主动的、迫切地运用数学建模思想,提出问题、分析问题、解决问题。作为教师就要把数学内容与学生生活进行整合,找到生活与知识的契合点,并以他为切入点引导学生建构模型,让学生体验建模过程并且形成建模思想。

  1.培育学生建模意识。在小学数学教学中教师要通过引入现实生活和学科为问题情境的探索性例题,让学生明确怎样应用数学解决这些实际问题。并学会积极参与建模的创造过程,从而解决这些实际问题,体现数学的实际应用能力和社会功能。教师要站在提高学生思维能力、情感态度与价值观等方面把渗透数学建模的意识作为首要任务,并且还要注重培养学生数学语言的转换能力和数学阅读理解能力。

  简而言之,我们从教的角度讲,数学建模就是引导学生建构数学模型、形成数学思想的过程。我们从学的角度讲,就是自主探索、发现建构、自觉应用的过程。然而贯彻建模思想的小学数学教学,往往注重了数学教学的形却忽略了数学建模的核。大批教师缺乏数学建模的思想意识,更缺乏指导数学建模的策略,建模之路艰巨漫长。

  2让学生体验建模过程。数学建模就是要把现实生活中实际问题加以提炼,抽象为数学模型,在根据数学规律进行推理求解,验证模型的合理性,并用该数学模型所提供的解答来解释、应用现实问题的过程。站在小学生的角度,数学建模则是让学生重在体验建模的过程,通过实际问题情境,让学生在建模过程中感受数学形成和创造的过程。笔者认为数学建模探究的过程是最重要的环节,要把培养小学生应用数学的思想意识贯彻在实际生活问题中,认真观察、分析、综合、抽象、推理、慨括,建构模型,解决数学问题,解决实际问题的整个过程。

  3让学生形成建模思想。使学生运用掌握的数学知识,对问题进行观察、测量、分析、总结解决现实问题,使学生透过现象更能够抽象、概括其问题的本质,尝试具休问题转化数学模型,建立问题解决数学模型,进行信息分析处理,提出假设,进行抽象概括,建立特定的数量关系,运用相关知识解决问题。通过数学建模,形成数学建模思想,让学生真正体会到它的价值所在,真正了解数学知识的发生过程,增强学生学习数学的兴趣,提高分析问题、解决问题的能力。我们知道数学模型的建立不是最终日的,小学生形成模型意识,建立思维方法,反过来解决实际问题,促进自我的数学建构,这种数学化的思想才是根本的目的。

  三、建模思想的渗透性

  小学数学教学一定要重视数学建模的核,不要让建模成为形式的过场,教学中我们要有意识地创设实际的问题情境,让建模思想渗透进去,让小学生们在实践、探究、运用中形成一种建模技能,建立建模的思维方法,让学生所学的数学知识更系统、更完整,更能解决实际问题。我们还可以通过多种形式,让学生加深理解建模的过程和重要性,让学生学会在创造中学习。

  1数学建模在教材中选取。教师首先要从建模的角度对教材进行解读。小学数学教材中,部分内容已经按照:“生活情境――抽象模型――模型验证――模型解释与应用”建模的思路进行了编排。教师要充分挖掘教材中蕴含的建模思想,还要精心没计、精心选择列入教学内容的实际问题,用所学的数学知识将文际问题数学化,构建模型解决现实问题。其次,在教学活动中理清适合用建模思想展开教学的内容。教师用数学建模思想解读教材内容,并不是所有的教材内容都适合数学建模。要把适合数学建模的教材很系统的理清楚,最后考虑怎样进行数学建模,怎样准确的运用建模思想展开数学教学。

  2数学建模在课题中延伸。数学建模的课堂教学是更能体现情境性、探究性、发展性的教学,其重点是对学生数学建模能力的开发、思维的激发、思想的熏陶。学科综合实践活动课是打通学科界限,促进学科相互融通的唯一途径。比如小学六数教材安排的探索与实践是:

  第一,动手实体操作。画规定高和规定面积的几何图形,选择小木棒制作正方体、长正方体框架,长方形纸采用不同方法卷成圆柱体进行比较、计算、发现、探究。

  第二,调查具体分析――调查日常生活中所用家具、家电包装的尺寸并计算周长、面积、体积;测量圆柱形易拉罐的容积,并与标示尺寸作比较;寻找生活中百分数的应用等。

  第三,拓展实际应用一――掌握计算器的使用方法,根据公式计算家庭恩格尔系数;根据公式测算同学朋友的标准体重和健康状况:

  第四,数学规律发现――探究规律。两条平行线之间距离为高,可以画出无数个即符合要求又形状各异的三角形。教师引导学生画后比较,让学生不但发现开放的价值所在,还要明白所学知识灵活应用的功效。长方形卷成圆柱体这是学生平常耍着玩的举动,但是要在玩中明白卷法的同与不同,并把类似问题迁移到生活中,比如:同样的材料围粮囤怎样才能使容积最大等。

  将教材中某些适宜建模的内容与相关内容进行合理整合,明确指示建模的问题,拓宽学生的数学知识、延伸学生的思路、训练学生思维、开发应用数学知识解决现实问题,提高学生的数学素养和综合能力。配合教材具体内容,制作教具、学具并有针对性的进行实际操作测量活动。如:利用求长方体的知识让学生设计制作电视、电冰箱的保护套;利用比例的知识,让学生了解建筑物的高度等等。

  3.数学建模在实践中拓展。目前不同版本的教材,增设了“实践与综合运用”与“你知道吗?”这样的教学内容,很有利于在实践活动课上,对学生进行建模指导。基于教材内容的需要,把各知识点进行整合,让其融入生活情境,创构巧妙的“建模问题”当做实践活动课主题。如:小学数学教材中“奇妙的图形密铺”,可以把它拓展成为教室、卧室等房间装潢提供科学美观的密铺方案。开展这样的建模拓展活动,能激发学生的反应能力和自我开拓能力,这是一种创造性的学习方法,它在培养学生学习数学、应用数学和创造能力方面可喻成是“建模之上的建模。”

数学建模心得体会15

  首先简要的介绍一下我的情况。数学建模我也是在大一暑假开始接触的,之前对其没有任何的了解。我本身对数学也有相对较厚的兴趣,同时我也是计算机专业的学生,因此,我觉得我可参加数学建模的这个比赛。大一的暑假参加了国赛,获得了国一;大二的寒假参加了美赛,成绩还未知。

  接下来,说说我在比赛前后的感受。比赛前,对数学建模缺少足够的了解,只知道数学建模分为3个部分:建模,编程,论文。同时,我也参加了为期一个月的培训。由于本人当时乏自信,害怕前面几个步骤卡壳,最终还是选择了论文这一部分。我也和大部分的同学一样认为论文是最不重要的,只要模型好,编程算法好就行。但是,最终我们辅导老师告诉我,我们这一组是以论文取胜的。模型与算法都只是基本的,并没有什么出彩的地方。

  因此,总的来说,在比赛之前,需要相对系统性的比赛培训,特别是对算法的掌握。算法是解决问题的很重要的一部分。我推荐可以自己或者要求老师给你们讲一下姜启源老师的《模型与算法》这一本书,这本书是数学建模的经典书本。培训对于三个参加比赛的同学可以不同侧重去掌握,但是每个人至少是一门精通,一门掌握,一门了解。在培训后,会对数学建模这个比赛有一定的了解,在此了解之上可以开始正式做题目写论文了。

  若是参加国赛,则可以挑选前几年国赛的题目,因为这些题目是有优秀论文的,可以参考这些优秀论文,学习优秀论文的写作手法,学习优秀论文他们写的模型和程序。这些题目最适合入门级的同学做的。我们组在比赛前总共做了7题国赛题目,且都基本完成论文:

  这些主要是用来练手的,前几篇只要是去学习别人的写作方法,建模方式和编程方法,而后面几篇则是根据学习自主写论文,基本不能参考别人的论文。写完自己的论文后,整理一下自己的比赛资料。最后,在比赛前2天,不需要再去做题目了,就好好放松一下,好好睡睡觉,提前为比赛补觉。或者说不想放松,可以看看之前整理的资料。

  对于建模的同学需要掌握多种算法,或者说基本都要有些涉略,但是至少有1—2种算法是能够详细的解释的。对于编程的同学,如果说是计算机专业的,那么对MATLAB需要熟悉运用,因为建模的同学完成后需要编程的同学来跑结果。对于写论文的同学,可以根据自己的经验在比赛前就完成论文的模板。以下是我在比赛前写的论文模板。

  比赛中,由于是第一次参加比赛,特别特别的紧张。一拿到题目就全身心的投入到比赛中,手机也不接受任何微信,QQ的消息。现在想来自己当时也特别的疯狂。我们组一开始对A题很有兴趣,讨论了一个晚上也讨论不出个所以然来。最后决定选择B题,所幸我们选题的时间花费还不是特别的多,接下来就是建模,编程和写论文。以及最后论文的不断修改,不断修改。

  比赛后,我当时突然觉得不管到最后有没有获奖,自己这个暑假过的还是挺充实的,至少我奋斗过,努力过。或者说我没有整天躺在家里点点外卖,玩玩手机。但是,竟然拿了国一,确实出乎我的意料。我以为我这样子的三脚猫功夫能够拿一个省一也有点抬举我了,受宠若惊。我们也去参加了武汉的颁奖,突然认识到了自己的不足,国一的队伍也不在少数,而且很多队伍都做到了比赛后对比赛的总结与改进,这一点我缺少认识。

  对于分工,我建议三个同学每个人分别担任一项。然后建模的同学需要对论文的写作有所掌握,编程的同学需要对建模有所掌握,写论文的同学对全局都要有一个掌握。我们组是以论文的同学为主导的。

  以下是从我的角度,对如何写一篇格式看起来不错的论文写一些见解。(从论文的排版由上至下)

  ①题目:对于国赛来讲,需要写的稍微书面化一点,比如:

  1、基于多目标路径规划的优化问题

  2、基于旅行商规划模型的碎纸片拼接复原问题研究

  ②摘要:这一部分是对全文的总结,放于整篇文章都写完后完成。要求做到言简意赅,不要有多余的废话。可以将重要的词语进行标粗

  以配送问题为例,写摘要时,先阐述问题要求我们做什么,然后写明我们采用什么模型对其进行求解。接下来详细的描述题目的求解过程。最后写明本问题的求解结果。

  ③关键词:这一部分写文章的主要求解的.目标,求解运用的算法等约4—5个。

  摘要和关键词要求控制在一页以内,不能超出一页

  ④问题重述:分为问题背景与问题的提出。最好与所给的题目用自己语言进行描述,时间来不及再复制题目。

  ⑤问题分析:对不同的问题分开分析

  其中,需要写明问题的要求与所建立的模型,以及详细的所准备做的求解过程,我认为是摘要的详细版。

  ⑥模型的假设:根据所做题目的过程中会产生假设,写论文的同学需要在讨论题目的时候记得写下来,很容易忘记。

  ⑦符号说明:表格做的尽量好看,给看论文的老师留下良好的印象。

  符号说明最好不要分开两页来写,很容易给人凑字数的感觉,并且两页不好看。

  ⑧模型的建立与求解:根据所建立的模型分点讨论。

  以其中一个问题为例,可以先写模型的准备以及数据的预处理,然后写明模型的建立(这一部分对所建立的模型详细的阐述),接下来写模型的求解,最后写模型的结果和分析。

  ⑨灵敏度分析:控制变量对所设立的变量进行灵敏度的分析

  ⑩模型的评价与推广:模型的评价写明所建立的模型的优点与缺点。模型的推广写明本文所建立的模型对其他方面或者对未来有什么作用。

【数学建模心得体会】相关文章:

数学建模心得体会04-26

数学建模学习心得体会11-09

数学建模协会工作计划12-03

数学心得体会05-24

数学的心得体会02-14

学生的数学心得体会12-13

数学听课心得体会06-29

数学听课心得体会02-07

数学新课改心得体会09-17

Copyright©2003-2024gushici.weiyujianbao.cn版权所有