函数知识点总结(集锦15篇)
总结是对取得的成绩、存在的问题及得到的经验和教训等方面情况进行评价与描述的一种书面材料,它可以使我们更有效率,因此,让我们写一份总结吧。那么你知道总结如何写吗?以下是小编精心整理的函数知识点总结,仅供参考,大家一起来看看吧。
函数知识点总结1
一:函数及其表示
知识点详解文档包含函数的概念、映射、函数关系的判断原则、函数区间、函数的三要素、函数的定义域、求具体或抽象数值的函数值、求函数值域、函数的表示方法等
1. 函数与映射的区别:
2. 求函数定义域
常见的用解析式表示的函数f(x)的定义域可以归纳如下:
①当f(x)为整式时,函数的定义域为R.
②当f(x)为分式时,函数的定义域为使分式分母不为零的实数集合。
③当f(x)为偶次根式时,函数的定义域是使被开方数不小于0的实数集合。
④当f(x)为对数式时,函数的定义域是使真数为正、底数为正且不为1的实数集合。
⑤如果f(x)是由几个部分的数学式子构成的,那么函数定义域是使各部分式子都有意义的实数集合,即求各部分有意义的实数集合的交集。
⑥复合函数的定义域是复合的各基本的函数定义域的交集。
⑦对于由实际问题的`背景确定的函数,其定义域除上述外,还要受实际问题的制约。
3. 求函数值域
(1)、观察法:通过对函数定义域、性质的观察,结合函数的解析式,求得函数的值域;
(2)、配方法;如果一个函数是二次函数或者经过换元可以写成二次函数的形式,那么将这个函数的右边配方,通过自变量的范围可以求出该函数的值域;
(3)、判别式法:
(4)、数形结合法;通过观察函数的图象,运用数形结合的方法得到函数的值域;
(5)、换元法;以新变量代替函数式中的某些量,使函数转化为以新变量为自变量的函数形式,进而求出值域;
(6)、利用函数的单调性;如果函数在给出的定义域区间上是严格单调的,那么就可以利用端点的函数值来求出值域;
(7)、利用基本不等式:对于一些特殊的分式函数、高于二次的函数可以利用重要不等式求出函数的值域;
(8)、最值法:对于闭区间[a,b]上的连续函数y=f(x),可求出y=f(x)在区间[a,b]内的极值,并与边界值f(a).f(b)作比较,求出函数的最值,可得到函数y的值域;
(9)、反函数法:如果函数在其定义域内存在反函数,那么求函数的值域可以转化为求反函数的定义域。
函数知识点总结2
(一)、映射、函数、反函数
1、对应、映射、函数三个概念既有共性又有区别,映射是一种特殊的对应,而函数又是一种特殊的映射。
2、对于函数的概念,应注意如下几点:
(1)掌握构成函数的三要素,会判断两个函数是否为同一函数。
(2)掌握三种表示法——列表法、解析法、图象法,能根实际问题寻求变量间的函数关系式,特别是会求分段函数的解析式。
(3)如果y=f(u),u=g(x),那么y=f[g(x)]叫做f和g的复合函数,其中g(x)为内函数,f(u)为外函数。
3、求函数y=f(x)的反函数的一般步骤:
(1)确定原函数的值域,也就是反函数的定义域;
(2)由y=f(x)的解析式求出x=f—1(y);
(3)将x,y对换,得反函数的习惯表达式y=f—1(x),并注明定义域。
注意:
①对于分段函数的反函数,先分别求出在各段上的反函数,然后再合并到一起。
②熟悉的应用,求f—1(x0)的值,合理利用这个结论,可以避免求反函数的过程,从而简化运算。
(二)、函数的解析式与定义域
1、函数及其定义域是不可分割的整体,没有定义域的函数是不存在的,因此,要正确地写出函数的解析式,必须是在求出变量间的对应法则的同时,求出函数的定义域。求函数的定义域一般有三种类型:
(1)有时一个函数来自于一个实际问题,这时自变量x有实际意义,求定义域要结合实际意义考虑;
(2)已知一个函数的解析式求其定义域,只要使解析式有意义即可。如:
①分式的分母不得为零;
②偶次方根的被开方数不小于零;
③对数函数的真数必须大于零;
④指数函数和对数函数的底数必须大于零且不等于1;
⑤三角函数中的正切函数y=tanx(x∈R,且k∈Z),余切函数y=cotx(x∈R,x≠kπ,k∈Z)等。
应注意,一个函数的解析式由几部分组成时,定义域为各部分有意义的自变量取值的公共部分(即交集)。
(3)已知一个函数的定义域,求另一个函数的定义域,主要考虑定义域的深刻含义即可。
已知f(x)的定义域是[a,b],求f[g(x)]的定义域是指满足a≤g(x)≤b的x的取值范围,而已知f[g(x)]的定义域[a,b]指的是x∈[a,b],此时f(x)的定义域,即g(x)的值域。
2、求函数的解析式一般有四种情况
(1)根据某实际问题需建立一种函数关系时,必须引入合适的变量,根据数学的有关知识寻求函数的解析式。
(2)有时题设给出函数特征,求函数的解析式,可采用待定系数法。比如函数是一次函数,可设f(x)=ax+b(a≠0),其中a,b为待定系数,根据题设条件,列出方程组,求出a,b即可。
(3)若题设给出复合函数f[g(x)]的表达式时,可用换元法求函数f(x)的表达式,这时必须求出g(x)的值域,这相当于求函数的定义域。
(4)若已知f(x)满足某个等式,这个等式除f(x)是未知量外,还出现其他未知量(如f(—x),等),必须根据已知等式,再构造其他等式组成方程组,利用解方程组法求出f(x)的表达式。
(三)、函数的值域与最值
1、函数的值域取决于定义域和对应法则,不论采用何种方法求函数值域都应先考虑其定义域,求函数值域常用方法如下:
(1)直接法:亦称观察法,对于结构较为简单的函数,可由函数的解析式应用不等式的性质,直接观察得出函数的值域。
(2)换元法:运用代数式或三角换元将所给的.复杂函数转化成另一种简单函数再求值域,若函数解析式中含有根式,当根式里一次式时用代数换元,当根式里是二次式时,用三角换元。
(3)反函数法:利用函数f(x)与其反函数f—1(x)的定义域和值域间的关系,通过求反函数的定义域而得到原函数的值域,形如(a≠0)的函数值域可采用此法求得。
(4)配方法:对于二次函数或二次函数有关的函数的值域问题可考虑用配方法。
(5)不等式法求值域:利用基本不等式a+b≥[a,b∈(0,+∞)]可以求某些函数的值域,不过应注意条件“一正二定三相等”有时需用到平方等技巧。
(6)判别式法:把y=f(x)变形为关于x的一元二次方程,利用“△≥0”求值域。其题型特征是解析式中含有根式或分式。
(7)利用函数的单调性求值域:当能确定函数在其定义域上(或某个定义域的子集上)的单调性,可采用单调性法求出函数的值域。
(8)数形结合法求函数的值域:利用函数所表示的几何意义,借助于几何方法或图象,求出函数的值域,即以数形结合求函数的值域。
2、求函数的最值与值域的区别和联系
求函数最值的常用方法和求函数值域的方法基本上是相同的,事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值。因此求函数的最值与值域,其实质是相同的,只是提问的角度不同,因而答题的方式就有所相异。
如函数的值域是(0,16],最大值是16,无最小值。再如函数的值域是(—∞,—2]∪[2,+∞),但此函数无最大值和最小值,只有在改变函数定义域后,如x>0时,函数的最小值为2。可见定义域对函数的值域或最值的影响。
3、函数的最值在实际问题中的应用
函数的最值的应用主要体现在用函数知识求解实际问题上,从文字表述上常常表现为“工程造价最低”,“利润最大”或“面积(体积)最大(最小)”等诸多现实问题上,求解时要特别关注实际意义对自变量的制约,以便能正确求得最值。
(四)、函数的奇偶性
1、函数的奇偶性的定义:对于函数f(x),如果对于函数定义域内的任意一个x,都有f(—x)=—f(x)(或f(—x)=f(x)),那么函数f(x)就叫做奇函数(或偶函数)。
正确理解奇函数和偶函数的定义,要注意两点:(1)定义域在数轴上关于原点对称是函数f(x)为奇函数或偶函数的必要不充分条件;(2)f(x)=—f(x)或f(—x)=f(x)是定义域上的恒等式。(奇偶性是函数定义域上的整体性质)。
2、奇偶函数的定义是判断函数奇偶性的主要依据。为了便于判断函数的奇偶性,有时需要将函数化简或应用定义的等价形式:
注意如下结论的运用:
(1)不论f(x)是奇函数还是偶函数,f(|x|)总是偶函数;
(2)f(x)、g(x)分别是定义域D1、D2上的奇函数,那么在D1∩D2上,f(x)+g(x)是奇函数,f(x)·g(x)是偶函数,类似地有“奇±奇=奇”“奇×奇=偶”,“偶±偶=偶”“偶×偶=偶”“奇×偶=奇”;
(3)奇偶函数的复合函数的奇偶性通常是偶函数;
(4)奇函数的导函数是偶函数,偶函数的导函数是奇函数。
3、有关奇偶性的几个性质及结论
(1)一个函数为奇函数的充要条件是它的图象关于原点对称;一个函数为偶函数的充要条件是它的图象关于y轴对称。
(2)如要函数的定义域关于原点对称且函数值恒为零,那么它既是奇函数又是偶函数。
(3)若奇函数f(x)在x=0处有意义,则f(0)=0成立。
(4)若f(x)是具有奇偶性的区间单调函数,则奇(偶)函数在正负对称区间上的单调性是相同(反)的。
(5)若f(x)的定义域关于原点对称,则F(x)=f(x)+f(—x)是偶函数,G(x)=f(x)—f(—x)是奇函数。
(6)奇偶性的推广
函数y=f(x)对定义域内的任一x都有f(a+x)=f(a—x),则y=f(x)的图象关于直线x=a对称,即y=f(a+x)为偶函数。函数y=f(x)对定义域内的任—x都有f(a+x)=—f(a—x),则y=f(x)的图象关于点(a,0)成中心对称图形,即y=f(a+x)为奇函数。
(五)、函数的单调性
1、单调函数
对于函数f(x)定义在某区间[a,b]上任意两点x1,x2,当x1>x2时,都有不等式f(x1)>(或<)f(x2)成立,称f(x)在[a,b]上单调递增(或递减);增函数或减函数统称为单调函数。
对于函数单调性的定义的理解,要注意以下三点:
(1)单调性是与“区间”紧密相关的概念。一个函数在不同的区间上可以有不同的单调性。
(2)单调性是函数在某一区间上的“整体”性质,因此定义中的x1,x2具有任意性,不能用特殊值代替。
(3)单调区间是定义域的子集,讨论单调性必须在定义域范围内。
(4)注意定义的两种等价形式:
设x1、x2∈[a,b],那么:
①在[a、b]上是增函数;
在[a、b]上是减函数。
②在[a、b]上是增函数。
在[a、b]上是减函数。
需要指出的是:①的几何意义是:增(减)函数图象上任意两点(x1,f(x1))、(x2,f(x2))连线的斜率都大于(或小于)零。
(5)由于定义都是充要性命题,因此由f(x)是增(减)函数,且(或x1>x2),这说明单调性使得自变量间的不等关系和函数值之间的不等关系可以“正逆互推”。
5、复合函数y=f[g(x)]的单调性
若u=g(x)在区间[a,b]上的单调性,与y=f(u)在[g(a),g(b)](或g(b),g(a))上的单调性相同,则复合函数y=f[g(x)]在[a,b]上单调递增;否则,单调递减。简称“同增、异减”。
在研究函数的单调性时,常需要先将函数化简,转化为讨论一些熟知函数的单调性。因此,掌握并熟记一次函数、二次函数、指数函数、对数函数的单调性,将大大缩短我们的判断过程。
6、证明函数的单调性的方法
(1)依定义进行证明。其步骤为:
①任取x1、x2∈M且x1(或<)f(x2);
②根据定义,得出结论。
(2)设函数y=f(x)在某区间内可导。
如果f′(x)>0,则f(x)为增函数;如果f′(x)<0,则f(x)为减函数。
(六)、函数的图象
函数的图象是函数的直观体现,应加强对作图、识图、用图能力的培养,培养用数形结合的思想方法解决问题的意识。
求作图象的函数表达式
与f(x)的关系
由f(x)的图象需经过的变换
y=f(x)±b(b>0)
沿y轴向平移b个单位
y=f(x±a)(a>0)
沿x轴向平移a个单位
y=—f(x)
作关于x轴的对称图形
y=f(|x|)
右不动、左右关于y轴对称
y=|f(x)|
上不动、下沿x轴翻折
y=f—1(x)
作关于直线y=x的对称图形
y=f(ax)(a>0)
横坐标缩短到原来的,纵坐标不变
y=af(x)
纵坐标伸长到原来的|a|倍,横坐标不变
y=f(—x)
作关于y轴对称的图形
【例】定义在实数集上的函数f(x),对任意x,y∈R,有f(x+y)+f(x—y)=2f(x)·f(y),且f(0)≠0。
①求证:f(0)=1;
②求证:y=f(x)是偶函数;
③若存在常数c,使求证对任意x∈R,有f(x+c)=—f(x)成立;试问函数f(x)是不是周期函数,如果是,找出它的一个周期;如果不是,请说明理由。
思路分析:我们把没有给出解析式的函数称之为抽象函数,解决这类问题一般采用赋值法。
解答:①令x=y=0,则有2f(0)=2f2(0),因为f(0)≠0,所以f(0)=1。
②令x=0,则有f(x)+f(—y)=2f(0)·f(y)=2f(y),所以f(—y)=f(y),这说明f(x)为偶函数。
③分别用(c>0)替换x、y,有f(x+c)+f(x)=
所以,所以f(x+c)=—f(x)。
两边应用中的结论,得f(x+2c)=—f(x+c)=—[—f(x)]=f(x),所以f(x)是周期函数,2c就是它的一个周期。
函数知识点总结3
倍角公式
二倍角公式
正弦形式:sin2α=2sinαcosα
正切形式:tan2α=2tanα/(1-tan^2(α))
余弦形式:cos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)
三倍角公式
sin3α=4sinα·sin(π/3+α)sin(π/3-α)
cos3α=4cosα·cos(π/3+α)cos(π/3-α)
tan3a=tana·tan(π/3+a)·tan(π/3-a)
四倍角公式
sin4A=-4*(cosA*sinA*(2*sinA^2-1))
cos4A=1+(-8*cosA^2+8*cosA^4)
tan4A=(4*tanA-4*tanA^3)/(1-6*tanA^2+tanA^4)
半角公式
正弦
sin(A/2)=√((1-cosA)/2)
sin(A/2)=-√((1-cosA)/2)
余弦
cos(A/2)=√((1+cosA)/2)
cos(A/2)=-√((1+cosA)/2)
正切
tan(A/2)=√((1-cosA)/((1+cosA))
tan(A/2)=-√((1-cosA)/((1+cosA))
积化和差
sina*cosb=[sin(a+b)+sin(a-b)]/2
cosa*sinb=[sin(a+b)-sin(a-b)]/2
cosa*cosb=[cos(a+b)+cos(a-b)]/2
sina*sinb=[cos(a-b)-cos(a+b)]/2
和差化积
sina+sinb=2sin[(a+b)/2]cos[(a-b)/2]
sina-sinb=2sin[(a-b)/2]cos[(a+b)/2]
cosa+cosb=2cos[(a+b)/2]cos[(a-b)/2]
cosa-cosb=-2sin[(a+b)/2]sin[(a-b)/2]
诱导公式
任意角α与-α的三角函数值之间的关系:
sin(-α)=-sinα
cos(-α)=cosα
tan(-α)=-tanα
cot(-α)=-cotα
设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:
sin(π+α)=-sinα
cos(π+α)=-cosα
tan(π+α)=tanα
cot(π+α)=cotα
利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:
sin(π-α)=sinα
cos(π-α)=-cosα
tan(π-α)=-tanα
cot(π-α)=-cotα
设α为任意角,终边相同的'角的同一三角函数的值相等:
sin(2kπ+α)=sinα(k∈Z)
cos(2kπ+α)=cosα(k∈Z)
tan(2kπ+α)=tanα(k∈Z)
cot(2kπ+α)=cotα(k∈Z)
利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:
sin(2π-α)=-sinα
cos(2π-α)=cosα
tan(2π-α)=-tanα
cot(2π-α)=-cotα
π/2±α及3π/2±α与α的三角函数值之间的关系:
sin(π/2+α)=cosα
cos(π/2+α)=-sinα
tan(π/2+α)=-cotα
cot(π/2+α)=-tanα
sin(π/2-α)=cosα
cos(π/2-α)=sinα
tan(π/2-α)=cotα
cot(π/2-α)=tanα
sin(3π/2+α)=-cosα
cos(3π/2+α)=sinα
tan(3π/2+α)=-cotα
cot(3π/2+α)=-tanα
sin(3π/2-α)=-cosα
cos(3π/2-α)=-sinα
tan(3π/2-α)=cotα
cot(3π/2-α)=tanα
(以上k∈Z)
拓展阅读:三角函数常用知识点
1、勾股定理:直角三角形两直角边a、b的平方和等于斜边c的平方。
2、在Rt△ABC中,∠C为直角,则∠A的锐角三角函数为(∠A可换成∠B)
3、任意锐角的正弦值等于它的余角的余弦值;任意锐角的余弦值等于它的余角的正弦值。
4、任意锐角的正切值等于它的余角的余切值;任意锐角的余切值等于它的余角的正切值。
5、正弦、余弦的增减性:当0°≤α≤90°时,sinα随α的增大而增大,cosα随α的增大而减小。
6、正切、余切的增减性:当0°<α<90°时,tanα随α的增大而增大,cotα随α的增大而减小。
函数知识点总结4
基本概念
1、变量:在一个变化过程中可以取不同数值的量。常量:在一个变化过程中只能取同一数值的量。
2、函数:一般的,在一个变化过程中,如果有两个变量x和y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就把x称为自变量,把y称为因变量,y是x的函数。
*判断Y是否为X的函数,只要看X取值确定的时候,Y是否有唯一确定的值与之对应3、定义域:一般的,一个函数的自变量允许取值的范围,叫做这个函数的定义域。(x的取值范围)一次函数
1..自变量x和因变量y有如下关系:
y=kx+b(k为任意不为零实数,b为任意实数)则此时称y是x的一次函数。特别的,当b=0时,y是x的正比例函数。即:y=kx(k为任意不为零实数)
定义域:自变量的取值范围,自变量的取值应使函数有意义;要与实际有意义。2.当x=0时,b为函数在y轴上的截距。一次函数性质:
1在一次函数上的任意一点P(x,y),都满足等式:y=kx+b(k≠0)。
2一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像总是过原点。3.函数不是数,它是指某一变量过程中两个变量之间的关系。
特别地,当b=0时,直线通过原点O(0,0)表示的是正比例函数的图像。这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限。4、特殊位置关系
当平面直角坐标系中两直线平行时,其函数解析式中K值(即一次项系数)相等
当平面直角坐标系中两直线垂直时,其函数解析式中K值互为负倒数(即两个K值的乘积为-1)
应用
一次函数y=kx+b的性质是:(1)当k>0时,y随x的增大而增大;(2)当ky2,则x1与x2的大小关系是()
A.x1>x2B.x10,且y1>y2。根据一次函数的性质“当k>0时,y随x的增大而增大”,得x1>x2。故选A。
判断函数图象的位置例3.一次函数y=kx+b满足kb>0,且y随x的增大而减小,则此函数的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限
解:由kb>0,知k、b同号。因为y随x的增大而减小,所以k
(5)实际问题中,函数定义域还要和实际情况相符合,使之有意义。5、函数的图像
一般来说,对于一个函数,如果把自变量与函数的.每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象.
6、函数解析式:用含有表示自变量的字母的代数式表示因变量的式子叫做解析式。7、描点法画函数图形的一般步骤
第一步:列表(表中给出一些自变量的值及其对应的函数值);
第二步:描点(在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点);第三步:连线(按照横坐标由小到大的顺序把所描出的各点用平滑曲线连接起来)。8、函数的表示方法
列表法:一目了然,使用起来方便,但列出的对应值是有限的,不易看出自变量与函数之间的对应规律。
解析式法:简单明了,能够准确地反映整个变化过程中自变量与函数之间的相依关系,但有些实际问题中的函数关系,不能用解析式表示。
图象法:形象直观,但只能近似地表达两个变量之间的函数关系。9、正比例函数及性质
一般地,形如y=kx(k是常数,k≠0)的函数叫做正比例函数,其中k叫做比例系数.注:正比例函数一般形式y=kx(k不为零)①k不为零②x指数为1③b取零解析式:y=kx(k是常数,k≠0)必过点:(0,0)、(1,k)
走向:k>0时,图像经过一、三象限;k0,y随x的增大而增大;k0时,向上平移;当b0,图象经过第一、三象限;k0,图象经过第一、二象限;b0,y随x的增大而增大;k0时,将直线y=kx的图象向上平移b个单位;当b
.函数y=ax+b与y=bx+a的图象在同一坐标系内的大致位置正确的是()
将直线y=3x向下平移5个单位,得到直线;将直线y=-x-5向上平移5个单位,得到直线.若直线yxa和直线yxb的交点坐标为(m,8),则ab____________.
已知函数y=3x+1,当自变量增加m时,相应的函数值增加()A.3m+1B.3mC.mD.3m-111、一次函数y=kx+b的图象的画法.根据几何知识:经过两点能画出一条直线,并且只能画出一条直线,即两点确定一条直线,所以画一次函数的图象时,只要先描出两点,再连成直线即可.一般情况下:是先选取它与两坐标轴的交点:(0,b),坐标或纵坐标为0的点.
b>0经过第一、二、三象限b0图象从左到右上升,y随x的增大而增大经过第一、二、四象限经过第二、三、四象限经过第二、四象限k0时,向上平移;当b
(1)设一次函数的表达式(也叫解析式)为y=kx+b。(2)因为在一次函数上的任意一点P(x,y),都满足等式y=kx+b。所以可以列出2个方程:y1=kx1+b①
和y2=kx2+b②
(3)解这个二元一次方程,得到k,b的值。(4)最后得到一次函数的表达式。15、一元一次方程与一次函数的关系
任何一元一次方程到可以转化为ax+b=0(a,b为常数,a≠0)的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值.从图象上看,相当于已知直线y=ax+b确定它与x轴的交点的横坐标的值.
函数知识点总结5
(一)函数
1、变量:在一个变化过程中可以取不同数值的量。常量:在一个变化过程中只能取同一数值的量。
2、函数:一般的,在一个变化过程中,如果有两个变量x和y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就把x称为自变量,把y称为因变量,y是x的函数。一个X对应两个Y值是错误的x判断Y是否为X的函数,只要看X取值确定的时候,Y是否有唯一确定的值与之对应;
3、定义域:一般的,一个函数的自变量允许取值的范围,叫做这个函数的定义域。
4、确定函数定义域的方法:
(1)关系式为整式时,函数定义域为全体实数;
(2)关系式含有分式时,分式的分母不等于零;
(3)关系式含有二次根式时,被开放方数大于等于零;
(4)关系式中含有指数为零的式子时,底数不等于零;
(5)实际问题中,函数定义域还要和实际情况相符合,使之有意义。
5、函数的解析式:用含有表示自变量的字母的代数式表示因变量的式子叫做函数的解析式
6、函数的图像(函数图像上的点一定符合函数表达式,符合函数表达式的点一定在函数图像上)
一般来说,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象;
运用:求解析式中的参数、求函数解释式;
7、描点法画函数图形的一般步骤
第一步:列表(表中给出一些自变量的值及其对应的函数值);函数表达式为y=3X-2-1-20xx-6-3-6036
第二步:描点(在直角坐标系中,以自变量的'值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点);
第三步:连线(按照横坐标由小到大的顺序把所描出的各点用平滑曲线连接起来)。
8、函数的表示方法
列表法:一目了然,使用起来方便,但列出的对应值是有限的,不易看出自变量与函数之间的对应规律。
解析式法:简单明了,能够准确地反映整个变化过程中自变量与函数之间的相依关系,但有些实际问题中的函数关系,不能用解析式表示。
图象法:形象直观,但只能近似地表达两个变量之间的函数关系。
(二)一次函数1、一次函数的定义
一般地,形如ykxb(k,b是常数(其中k与b的形式较为灵活,但只要抓住函数基本形式,准确找到k与b,根据题意求的常数的取值范围),且k0)的函数,叫做一次函数,其中x是自变量。当b0时,一次函数ykx,又叫做正比例函数。
⑴一次函数的解析式的形式是ykxb,要判断一个函数是否是一次函数,就是判断是否能化成以上形式;
⑵当b0,k0时,ykx仍是一次函数;
⑶当b0,k0时,它不是一次函数;
⑷正比例函数是一次函数的特例,一次函数包括正比例函数;
2、正比例函数及性质
一般地,形如y=kx(k是常数,k≠0)的函数叫做正比例函数,其中k叫做比例系数.注:正比例函数一般形式y=kx(k不为零)①k不为零②x指数为1③b取零
当k>0时,直线y=kx经过三、一象限,从左向右上升,即随x的增大y也增大;当k0时,图像经过一、三象限;k0,y随x的增大而增大;k0时,向上平移;当b0,y随x的增大而增大();k4、一次函数y=kx+b的图象的画法.
在实际做题中只需要俩点就可以确定函数图像,一般我们令X=0求出阿Y的值再令Y=0求出X的值.如图
y=kx+b(0,b)解析:(两点确定一条直线,这两点我们一般确定在坐标轴上,因为X轴上所有坐标点的纵坐标为0即(x,0)Y轴上所有点的
(-b/k,0)横坐标为0即(0,y)这样作图既快又准确
5、正比例函数与一次函数之间的关系
一次函数y=kx+b的图象是一条直线,它可以看作是由直线y=kx平移|b|个单位长度而得到(当b>0时,向上平移;当b0时,直线经过一、三象限;k0,y随x的增大而增大;(从左向右上升)k0时,将直线y=kx的图象向上平移b个单位;b。
函数知识点总结6
1.函数的定义
函数是高考数学中的重点内容,学习函数需要首先掌握函数的各个知识点,然后运用函数的各种性质来解决具体的问题。
设A、B是非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A-B为从集合A到集合B的一个函数,记作y=f(x),xA
2.函数的定义域
函数的定义域分为自然定义域和实际定义域两种,如果给定的函数的解析式(不注明定义域),其定义域应指的是使该解析式有意义的自变量的取值范围(称为自然定义域),如果函数是有实际问题确定的,这时应根据自变量的实际意义来确定,函数的`值域是由全体函数值组成的集合。
3.求解析式
求函数的解析式一般有三种种情况:
(1)根据实际问题建立函数关系式,这种情况需引入合适的变量,根据数学的有关知识找出函数关系式。
(2)有时体中给出函数特征,求函数的解析式,可用待定系数法。
(3)换元法求解析式,f[h(x)]=g(x)求f(x)的问题,往往可设h(x)=t,从中解出x,代入g(x)进行换元来解。掌握求函数解析式的前提是,需要对各种函数的性质了解且熟悉。
目前我们已经学习了常数函数、指数与指数函数、对数与对数函数、幂函数、三角函数、反比例函数、二次函数以及由以上几种函数加减乘除,或者复合的一些相对较复杂的函数,但是这种函数也是初等函数。
函数知识点总结7
∴当x1时函数取得最大值,且ymax(1)2(1)13例4、已知函数f(x)x22(a1)x2
4],求实数a的取值(1)若函数f(x)的递减区间是(,4]上是减函数,求实数a的取值范围(2)若函数f(x)在区间(,分析:二次函数的单调区间是由其开口方向及对称轴决定的,要分清函数在区间A上是单调函数及单调区间是A的区别与联系
解:(1)f(x)的对称轴是x可得函数图像开口向上
2(a1)21a,且二次项系数为1>0
1a]∴f(x)的单调减区间为(,∴依题设条件可得1a4,解得a3
4]上是减函数(2)∵f(x)在区间(,4]是递减区间(,1a]的子区间∴(,∴1a4,解得a3
例5、函数f(x)x2bx2,满足:f(3x)f(3x)
(1)求方程f(x)0的两根x1,x2的和(2)比较f(1)、f(1)、f(4)的大小解:由f(3x)f(3x)知函数图像的对称轴为x(3x)(3x)23
b3可得b62f(x)x26x2(x3)211
而f(x)的图像与x轴交点(x1,0)、(x2,0)关于对称轴x3对称
x1x223,可得x1x26
第三章第32页由二次项系数为1>0,可知抛物线开口向上又134,132,431
∴依二次函数的对称性及单调性可f(4)f(1)f(1)(III)课后作业练习六
(Ⅳ)教学后记:
第三章第33页
扩展阅读:初中数学函数知识点归纳
学大教育
初中数学函数板块的知识点总结与归类学习方法
初中数学知识大纲中,函数知识占了很大的.知识体系比例,学好了函数,掌握了函数的基本性质及其应用,真正精通了函数的每一个模块知识,会做每一类函数题型,就读于中考中数学成功了一大半,数学成绩自然上高峰,同时,函数的思想是学好其他理科类学科的基础。初中数学从性质上分,可以分为:一次函数、反比例函数、二次函数和锐角三角函数,下面介绍各类函数的定义、基本性质、函数图象及函数应用思维方式方法。
一、一次函数
1.定义:在定义中应注意的问题y=kx+b中,k、b为常数,且k≠0,x的指数一定为1。2.图象及其性质(1)形状、直线
函数知识点总结8
一、函数
(1)定义:设在某变化过程中有两个变量x、y,对于x的每一个值,y都有唯一的值与之对应,那么就说x是自变量,y是因变量,此时,也称y是x的'函数。
(2)本质:一一对应关系或多一对应关系。
有序实数对平面直角坐标系上的点
(3)表示方法:解析法、列表法、图象法。
(4)自变量取值范围:
对于实际问题,自变量取值必须使实际问题有意义;
对于纯数学问题,自变量取值必须保证函数关系式有意义:
①分式中,分母≠0;
②二次根式中,被开方数≥0;
③整式中,自变量取全体实数;
④混合运算式中,自变量取各解集的公共部份。
二、正比例函数与反比例函数
两函数的异同点
三、一次函数(图象为直线)
(1)定义式:y=kx+b(k、b为常数,k≠0);自变量取全体实数。
(2)性质:
①k>0,过第一、三象限,y随x的增大而增大;
k<0,过第二、四象限,y随x的增大而减小。
②b=0,图象过(0,0);
b>0,图象与y轴的交点(0,b)在x轴上方;
b<0,图象与y轴的交点(0,b)在x轴下方。
四、二次函数(图象为抛物线)
(1)自变量取全体实数
一般式:y=ax2+bx+c(a、b、c为常数,a≠0),其中(0,c)为抛物线与y轴的交点;
顶点式:y=a(x—h)2+k(a、h、k为常数,a≠0),其中(h,k)为抛物线顶点;
h=—,k=零点式:y=a(x—x1)(x—x2)(a、x1、x2为常数,a≠0)其中(x1,0)、(x2,0)为抛物线与x轴的交点。x1、x2 =(b 2 —4ac ≥0)
(2)性质:
①对称轴:x=—或x=h;
②顶点:(—,)或(h,k);
③最值:当x=—时,y有最大(小)值,为或当x=h时,y有最大(小)值,为k;
函数知识点总结9
反比例函数的表达式
X是自变量,Y是X的函数
y=k/x=k·1/x
xy=k
y=k·x^(-1)(即:y等于x的负一次方,此处X必须为一次方)
y=kx(k为常数且k≠0,x≠0)若y=k/nx此时比例系数为:k/n
函数式中自变量取值的范围
①k≠0;②在一般的情况下,自变量x的取值范围可以是不等于0的任意实数;③函数y的取值范围也是任意非零实数。 解析式y=k/x其中X是自变量,Y是X的函数,其定义域是不等于0的一切实数
y=k/x=k·1/x xy=k y=k·x^(-1) y=kx(k为常数(k≠0),x不等于0)
反比例函数图象
反比例函数的图像属于以原点为对称中心的中心对称的双曲线,反比例函数图像中每一象限的每一支曲线会无限接近X轴Y轴但不会与坐标轴相交(K≠0)。
反比例函数中k的几何意义是什么?有哪些应用
过反比例函数y=k/x(k≠0),图像上一点P(x,y),作两坐标轴的垂线,两垂足、原点、P点组成一个矩形,矩形的面积S=x的.绝对值*y的绝对值=(x*y)的绝对值=|k|
研究函数问题要透视函数的本质特征。反比例函数中,比例系数k有一个很重要的几何意义,那就是:过反比例函数图象上任一点P作x轴、y轴的垂线PM、PN,垂足为M、N则矩形PMON的面积S=PM·PN=|y|·|x|=|xy|=|k|。
所以,对双曲线上任意一点作x轴、y轴的垂线,它们与x轴、y轴所围成的矩形面积为常数。从而有k的绝对值。在解有关反比例函数的问题时,若能灵活运用反比例函数中k的几何意义,会给解题带来很多方便。
函数知识点总结10
I.定义与定义表达式
一般地,自变量_和因变量y之间存在如下关系:y=a_^2+b_+c
(a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下,IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大.)则称y为_的二次函数。
二次函数表达式的右边通常为二次三项式。
II.二次函数的三种表达式
一般式:y=a_^2+b_+c(a,b,c为常数,a≠0)
顶点式:y=a(_-h)^2+k[抛物线的顶点P(h,k)]
交点式:y=a(_-_?)(_-_?)[仅限于与_轴有交点A(_?,0)和B(_?,0)的抛物线]
注:在3种形式的互相转化中,有如下关系:
h=-b/2a k=(4ac-b^2)/4a _?,_?=(-b±√b^2-4ac)/2a
III.二次函数的图像
在平面直角坐标系中作出二次函数y=_^2的图像,可以看出,二次函数的图像是一条抛物线。
IV.抛物线的性质
1.抛物线是轴对称图形。对称轴为直线_=-b/2a。
对称轴与抛物线的交点为抛物线的'顶点P。特别地,当b=0时,抛物线的对称轴是y轴(即直线_=0)
2.抛物线有一个顶点P,坐标为:P(-b/2a,(4ac-b^2)/4a)当-b/2a=0时,P在y轴上;当Δ=b^2-4ac=0时,P在_轴上。
3.二次项系数a决定抛物线的开口方向和大小。
当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。|a|越大,则抛物线的开口越小。
4.一次项系数b和二次项系数a共同决定对称轴的位置。
当a与b同号时(即ab>0),对称轴在y轴左;
当a与b异号时(即ab<0),对称轴在y轴右。
5.常数项c决定抛物线与y轴交点。
抛物线与y轴交于(0,c)
6.抛物线与_轴交点个数
Δ=b^2-4ac>0时,抛物线与_轴有2个交点。
Δ=b^2-4ac=0时,抛物线与_轴有1个交点。
Δ=b^2-4ac<0时,抛物线与_轴没有交点。
_的取值是虚数(_=-b±√b^2-4ac的值的相反数,乘上虚数i,整个式子除以2a)
V.二次函数与一元二次方程
特别地,二次函数(以下称函数)y=a_^2+b_+c,
当y=0时,二次函数为关于_的一元二次方程(以下称方程),即a_^2+b_+c=0
此时,函数图像与_轴有无交点即方程有无实数根。函数与_轴交点的横坐标即为方程的根。
函数知识点总结11
1. 函数的奇偶性
(1)若f(x)是偶函数,那么f(x)=f(-x) ;
(2)若f(x)是奇函数,0在其定义域内,则 f(0)=0(可用于求参数);
(3)判断函数奇偶性可用定义的等价形式:f(x)±f(-x)=0或 (f(x)≠0);
(4)若所给函数的解析式较为复杂,应先化简,再判断其奇偶性;
(5)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反的单调性;
2. 复合函数的有关问题
(1)复合函数定义域求法:若已知 的定义域为[a,b],其复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定义域为[a,b],求 f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域(即 f(x)的定义域);研究函数的问题一定要注意定义域优先的原则。
(2)复合函数的单调性由“同增异减”判定;
3.函数图像(或方程曲线的对称性)
(1)证明函数图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上;
(2)证明图像C1与C2的对称性,即证明C1上任意点关于对称中心(对称轴)的对称点仍在C2上,反之亦然;
(3)曲线C1:f(x,y)=0,关于y=x+a(y=-x+a)的对称曲线C2的方程为f(y-a,x+a)=0(或f(-y+a,-x+a)=0);
(4)曲线C1:f(x,y)=0关于点(a,b)的对称曲线C2方程为:f(2a-x,2b-y)=0;
(5)若函数y=f(x)对x∈R时,f(a+x)=f(a-x)恒成立,则y=f(x)图像关于直线x=a对称;
(6)函数y=f(x-a)与y=f(b-x)的图像关于直线x= 对称;
4.函数的周期性
(1)y=f(x)对x∈R时,f(x +a)=f(x-a) 或f(x-2a )=f(x) (a0)恒成立,则y=f(x)是周期为2a的周期函数;
(2)若y=f(x)是偶函数,其图像又关于直线x=a对称,则f(x)是周期为2︱a︱的周期函数;
(3)若y=f(x)奇函数,其图像又关于直线x=a对称,则f(x)是周期为4︱a︱的周期函数;
(4)若y=f(x)关于点(a,0),(b,0)对称,则f(x)是周期为2 的周期函数;
(5)y=f(x)的图象关于直线x=a,x=b(a≠b)对称,则函数y=f(x)是周期为2 的周期函数;
(6)y=f(x)对x∈R时,f(x+a)=-f(x)(或f(x+a)= ,则y=f(x)是周期为2 的周期函数;
5.
方程k=f(x)有解 k∈D(D为f(x)的.值域);
6.
a≥f(x) 恒成立 a≥[f(x)]max,; a≤f(x) 恒成立 a≤[f(x)]min;
7.
(1) (a0,a≠1,b0,n∈R+);
(2) l og a N= ( a0,a≠1,b0,b≠1);
(3) l og a b的符号由口诀“同正异负”记忆;
(4) a log a N= N ( a0,a≠1,N
8. 判断对应是否为映射时,抓住两点:
(1)A中元素必须都有象且唯一;
(2)B中元素不一定都有原象,并且A中不同元素在B中可以有相同的象;
9. 能熟练地用定义证明函数的单调性,求反函数,判断函数的奇偶性。
10.对于反函数,应掌握以下一些结论:
(1)定义域上的单调函数必有反函数;
(2)奇函数的反函数也是奇函数;
(3)定义域为非单元素集的偶函数不存在反函数;
(4)周期函数不存在反函数;
(5)互为反函数的两个函数具有相同的单调性;
(5) y=f(x)与y=f-1(x)互为反函数,设f(x)的定义域为A,值域为B,则有f[f--1(x)]=x(x∈B),f--1[f(x)]=x(x∈A).
11.处理二次函数的问题勿忘数形结合;二次函数在闭区间上必有最值,求最值问题用“两看法”:一看开口方向;二看对称轴与所给区间的相对位置关系;
12. 依据单调性,利用一次函数在区间上的保号性可解决求一类参数的范围问题
13. 恒成立问题的处理方法:(1)分离参数法;(2)转化为一元二次方程的根的分布列不等式(组)求解;
函数知识点总结12
1.常量和变量
在某变化过程中可以取不同数值的量,叫做变量.在某变化过程中保持同一数值的量或数,叫常量或常数.
2.函数
设在一个变化过程中有两个变量x与y,如果对于x在某一范围的每一个值,y都有唯一的值与它对应,那么就说x是自变量,y是x的函数.
3.自变量的取值范围
(1)整式:自变量取一切实数.(2)分式:分母不为零.
(3)偶次方根:被开方数为非负数.
(4)零指数与负整数指数幂:底数不为零.
4.函数值
对于自变量在取值范围内的一个确定的值,如当x=a时,函数有唯一确定的对应值,这个对应值,叫做x=a时的函数值.
5.函数的表示法
(1)解析法;(2)列表法;(3)图象法.
6.函数的图象
把自变量x的一个值和函数y的对应值分别作为点的横坐标和纵坐标,可以在平面直角坐标系内描出一个点,所有这些点的集合,叫做这个函数的图象.由函数解析式画函数图象的步骤:
(1)写出函数解析式及自变量的取值范围;
(2)列表:列表给出自变量与函数的一些对应值;
(3)描点:以表中对应值为坐标,在坐标平面内描出相应的点;
(4)连线:用平滑曲线,按照自变量由小到大的顺序,把所描各点连接起来.
7.一次函数
(1)一次函数
如果y=kx+b(k、b是常数,k≠0),那么y叫做x的一次函数.
特别地,当b=0时,一次函数y=kx+b成为y=kx(k是常数,k≠0),这时,y叫做x的正比例函数.
(2)一次函数的图象
一次函数y=kx+b的图象是一条经过(0,b)点和点的直线.特别地,正比例函数图象是一条经过原点的直线.需要说明的是,在平面直角坐标系中,“直线”并不等价于“一次函数y=kx+b(k≠0)的图象”,因为还有直线y=m(此时k=0)和直线x=n(此时k不存在),它们不是一次函数图象.
(3)一次函数的性质
当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.直线y=kx+b与y轴的交点坐标为(0,b),与x轴的交点坐标为.
(4)用函数观点看方程(组)与不等式
①任何一元一次方程都可以转化为ax+b=0(a,b为常数,a≠0)的形式,所以解一元一次方程可以转化为:一次函数y=kx+b(k,b为常数,k≠0),当y=0时,求相应的自变量的值,从图象上看,相当于已知直线y=kx+b,确定它与x轴交点的横坐标.
②二元一次方程组对应两个一次函数,于是也对应两条直线,从“数”的角度看,解方程组相当于考虑自变量为何值时两个函数值相等,以及这两个函数值是何值;从“形”的角度看,解方程组相当于确定两条直线的交点的坐标.
③任何一元一次不等式都可以转化ax+b>0或ax+b<0(a、b为常数,a≠0)的形式,解一元一次不等式可以看做:当一次函数值大于0或小于0时,求自变量相应的取值范围.
8.反比例函数(1)反比例函数
(1)如果(k是常数,k≠0),那么y叫做x的`反比例函数.
(2)反比例函数的图象反比例函数的图象是双曲线.
(3)反比例函数的性质
①当k>0时,图象的两个分支分别在第一、三象限内,在各自的象限内,y随x的增大而减小.
②当k<0时,图象的两个分支分别在第二、四象限内,在各自的象限内,y随x的增大而增大.
③反比例函数图象关于直线y=±x对称,关于原点对称.
(4)k的两种求法
①若点(x0,y0)在双曲线上,则k=x0y0.②k的几何意义:
若双曲线上任一点A(x,y),AB⊥x轴于B,则S△AOB
(5)正比例函数和反比例函数的交点问题
若正比例函数y=k1x(k1≠0),反比例函数,则当k1k2<0时,两函数图象无交点;
当k1k2>0时,两函数图象有两个交点,坐标分别为由此可知,正反比例函数的图象若有交点,两交点一定关于原点对称.
1.二次函数
如果y=ax2+bx+c(a,b,c为常数,a≠0),那么y叫做x的二次函数.
几种特殊的二次函数:y=ax2(a≠0);y=ax2+c(ac≠0);y=ax2+bx(ab≠0);y=a(x-h)2(a≠0).
2.二次函数的图象
二次函数y=ax2+bx+c的图象是对称轴平行于y轴的一条抛物线.由y=ax2(a≠0)的图象,通过平移可得到y=a(x-h)2+k(a≠0)的图象.
3.二次函数的性质
二次函数y=ax2+bx+c的性质对应在它的图象上,有如下性质:
(1)抛物线y=ax2+bx+c的顶点是,对称轴是直线,顶点必在对称轴上;
(2)若a>0,抛物线y=ax2+bx+c的开口向上,因此,对于抛物线上的任意一点(x,y),当x<时,y随x的增大而减小;当x>时,y随x的增大而增大;当x=,y有最小值;若a<0,抛物线y=ax2+bx+c的开口向下,因此,对于抛物线上的任意一点(x,y),当x<,y随x的增大而增大;当时,y随x的增大而减小;当x=时,y有最大值;
(3)抛物线y=ax2+bx+c与y轴的交点为(0,c);
(4)在二次函数y=ax2+bx+c中,令y=0可得到抛物线y=ax2+bx+c与x轴交点的情况:
<0时,抛物线y=ax2+bx+c与x轴没有公共点.=0时,抛物线y=ax2+bx+c与x轴只有一个公共点,即为此抛物线的顶点;当=b2-4ac>0,抛物线y=ax2+bx+c与x轴有两个不同的公共点,它们的坐标分别是和,这两点的距离为;当当4.抛物线的平移
抛物线y=a(x-h)2+k与y=ax2形状相同,位置不同.把抛物线y=ax2向上(下)、向左(右)平移,可以得到抛物线y=a(x-h)2+k.平移的方向、距离要根据h、k的值来决定.
函数知识点总结13
一、函数对称性:
1.2.3.4.5.6.7.8.
f(a+x)=f(a-x)==>f(x)关于x=a对称
f(a+x)=f(b-x)==>f(x)关于x=(a+b)/2对称f(a+x)=-f(a-x)==>f(x)关于点(a,0)对称f(a+x)=-f(a-x)+2b==>f(x)关于点(a,b)对称
f(a+x)=-f(b-x)+c==>f(x)关于点[(a+b)/2,c/2]对称y=f(x)与y=f(-x)关于x=0对称y=f(x)与y=-f(x)关于y=0对称y=f(x)与y=-f(-x)关于点(0,0)对称
例1:证明函数y=f(a+x)与y=f(b-x)关于x=(b-a)/2对称。
【解析】求两个不同函数的对称轴,用设点和对称原理作解。
证明:假设任意一点P(m,n)在函数y=f(a+x)上,令关于x=t的对称点Q(2tm,n),那么n=f(a+m)=f[b(2tm)]
∴b2t=a,==>t=(b-a)/2,即证得对称轴为x=(b-a)/2.
例2:证明函数y=f(a-x)与y=f(xb)关于x=(a+b)/2对称。
证明:假设任意一点P(m,n)在函数y=f(a-x)上,令关于x=t的对称点Q(2tm,n),那么n=f(a-m)=f[(2tm)b]
∴2t-b=a,==>t=(a+b)/2,即证得对称轴为x=(a+b)/2.
二、函数的周期性
令a,b均不为零,若:
1、函数y=f(x)存在f(x)=f(x+a)==>函数最小正周期T=|a|
2、函数y=f(x)存在f(a+x)=f(b+x)==>函数最小正周期T=|b-a|
3、函数y=f(x)存在f(x)=-f(x+a)==>函数最小正周期T=|2a|
4、函数y=f(x)存在f(x+a)=1/f(x)==>函数最小正周期T=|2a|
5、函数y=f(x)存在f(x+a)=[f(x)+1]/[1f(x)]==>函数最小正周期T=|4a|
这里只对第2~5点进行解析。
第2点解析:
令X=x+a,f[a+(xa)]=f[b+(xa)]∴f(x)=f(x+ba)==>T=ba
第3点解析:同理,f(x+a)=-f(x+2a)……
①f(x)=-f(x+a)……
②∴由①和②解得f(x)=f(x+2a)∴函数最小正周期T=|2a|
第4点解析:
f(x+2a)=1/f(x+a)==>f(x+a)=1/f(x+2a)
又∵f(x+a)=1/f(x)∴f(x)=f(x+2a)
∴函数最小正周期T=|2a|
第5点解析:
∵f(x+a)={2[1f(x)]}/[1f(x)]=2/[1f(x)]1
∴1f(x)=2/[f(x)+1]移项得f(x)=12/[f(x+a)+1]
那么f(x-a)=12/[f(x)+1],等式右边通分得f(x-a)=[f(x)1]/[1+f(x)]∴1/[f(x-a)=[1+f(x)]/[f(x)1],即-1/[f(x-a)=[1+f(x)]/[1-f(x)]∴-1/[f(x-a)=f(x+a),-1/[f(x2a)=f(x)==>-1/f(x)=f(x-2a)①,又∵-1/f(x)=f(x+2a)②,
由①②得f(x+2a)=f(x-2a)==>f(x)=f(x+4a)
∴函数最小正周期T=|4a|
扩展阅读:函数对称性、周期性和奇偶性的规律总结
函数对称性、周期性和奇偶性规律总结
(一)同一函数的函数的奇偶性与对称性:(奇偶性是一种特殊的'对称性)
1、奇偶性:
(1)奇函数关于(0,0)对称,奇函数有关系式f(x)f(x)0
(2)偶函数关于y(即x=0)轴对称,偶函数有关系式f(x)f(x)
2、奇偶性的拓展:同一函数的对称性
(1)函数的轴对称:
函数yf(x)关于xa对称f(ax)f(ax)
f(ax)f(ax)也可以写成f(x)f(2ax)或f(x)f(2ax)
若写成:f(ax)f(bx),则函数yf(x)关于直线x称
(ax)(bx)ab对22证明:设点(x1,y1)在yf(x)上,通过f(x)f(2ax)可知,y1f(x1)f(2ax1),
即点(2ax1,y1)也在yf(x)上,而点(x1,y1)与点(2ax1,y1)关于x=a对称。得证。
说明:关于xa对称要求横坐标之和为2a,纵坐标相等。
∵(ax1,y1)与(ax1,y1)关于xa对称,∴函数yf(x)关于xa对称
f(ax)f(ax)
∵(x1,y1)与(2ax1,y1)关于xa对称,∴函数yf(x)关于xa对称
f(x)f(2ax)
∵(x1,y1)与(2ax1,y1)关于xa对称,∴函数yf(x)关于xa对称
f(x)f(2ax)
(2)函数的点对称:
函数yf(x)关于点(a,b)对称f(ax)f(ax)2b
上述关系也可以写成f(2ax)f(x)2b或f(2ax)f(x)2b
若写成:f(ax)f(bx)c,函数yf(x)关于点(abc,)对称2证明:设点(x1,y1)在yf(x)上,即y1f(x1),通过f(2ax)f(x)2b可知,f(2ax1)f(x1)2b,所以f(2ax1)2bf(x1)2by1,所以点(2ax1,2by1)也在yf(x)上,而点(2ax1,2by1)与(x1,y1)关于(a,b)对称。得证。
说明:关于点(a,b)对称要求横坐标之和为2a,纵坐标之和为2b,如(ax)与(ax)之和为2a。
(3)函数yf(x)关于点yb对称:假设函数关于yb对称,即关于任一个x值,都有两个y值与其对应,显然这不符合函数的定义,故函数自身不可能关于yb对称。但在曲线c(x,y)=0,则有可能会出现关于yb对称,比如圆c(x,y)x2y240它会关于y=0对称。
(4)复合函数的奇偶性的性质定理:
性质1、复数函数y=f[g(x)]为偶函数,则f[g(-x)]=f[g(x)]。复合函数y=f[g(x)]为奇函数,则f[g(-x)]=-f[g(x)]。
性质2、复合函数y=f(x+a)为偶函数,则f(x+a)=f(-x+a);复合函数y=f(x+a)为奇函数,则f(-x+a)=-f(a+x)。
性质3、复合函数y=f(x+a)为偶函数,则y=f(x)关于直线x=a轴对称。复合函数y=f(x+a)为奇函数,则y=f(x)关于点(a,0)中心对称。
总结:x的系数一个为1,一个为-1,相加除以2,可得对称轴方程
总结:x的系数一个为1,一个为-1,f(x)整理成两边,其中一个的系数是为1,另一个为-1,存在对称中心。
总结:x的系数同为为1,具有周期性。
(二)两个函数的图象对称性
1、yf(x)与yf(x)关于X轴对称。
证明:设yf(x)上任一点为(x1,y1)则y1f(x1),所以yf(x)经过点(x1,y1)
∵(x1,y1)与(x1,y1)关于X轴对称,∴y1f(x1)与yf(x)关于X轴对称.注:换种说法:yf(x)与yg(x)f(x)若满足f(x)g(x),即它们关于y0对称。
函数知识点总结14
一次函数:一次函数图像与性质是中考必考的内容之一。中考试题中分值约为10分左右题型多样,形式灵活,综合应用性强。甚至有存在探究题目出现。
主要考察内容:
①会画一次函数的图像,并掌握其性质。
②会根据已知条件,利用待定系数法确定一次函数的解析式。
③能用一次函数解决实际问题。
④考察一ic函数与二元一次方程组,一元一次不等式的关系。
突破方法:
①正确理解掌握一次函数的概念,图像和性质。
②运用数学结合的思想解与一次函数图像有关的问题。
③掌握用待定系数法球一次函数解析式。
④做一些综合题的训练,提高分析问题的能力。
函数性质:
1.y的变化值与对应的x的变化值成正比例,比值为k.即:y=kx+b(k,b为常数,k≠0),∵当x增加m,k(x+m)+b=y+km,km/m=k。
2.当x=0时,b为函数在y轴上的点,坐标为(0,b)。
3当b=0时(即y=kx),一次函数图像变为正比例函数,正比例函数是特殊的一次函数。
4.在两个一次函数表达式中:
当两一次函数表达式中的`k相同,b也相同时,两一次函数图像重合;当两一次函数表达式中的k相同,b不相同时,两一次函数图像平行;当两一次函数表达式中的k不相同,b不相同时,两一次函数图像相交;当两一次函数表达式中的k不相同,b相同时,两一次函数图像交于y轴上的同一点(0,b)。若两个变量x,y间的关系式可以表示成Y=KX+b(k,b为常数,k不等于0)则称y是x的一次函数图像性质
1、作法与图形:通过如下3个步骤:
(1)列表.
(2)描点;[一般取两个点,根据“两点确定一条直线”的道理,也可叫“两点法”。一般的y=kx+b(k≠0)的图象过(0,b)和(-b/k,0)两点画直线即可。
正比例函数y=kx(k≠0)的图象是过坐标原点的一条直线,一般取(0,0)和(1,k)两点。(3)连线,可以作出一次函数的图象一条直线。因此,作一次函数的图象只需知道2点,并连成直线即可。(通常找函数图象与x轴和y轴的交点分别是-k分之b与0,0与b).
2、性质:
(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b(k≠0)。
(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像都是过原点。
3、函数不是数,它是指某一变化过程中两个变量之间的关系。
4、k,b与函数图像所在象限:
y=kx时(即b等于0,y与x成正比例):
当k>0时,直线必通过第一、三象限,y随x的增大而增大;当k0,b>0,这时此函数的图象经过第一、二、三象限;当k>0,b
函数知识点总结15
一、二次函数概念:
a0)b,c是常数
1.二次函数的概念:一般地,形如yax2bxc(a,的函数,叫做二次函数。这c可以为零.二次函数的定义域是全体实里需要强调:和一元二次方程类似,二次项系数a0,而b,数.
2.二次函数yax2bxc的结构特征:
⑴等号左边是函数,右边是关于自变量x的二次式,x的最高次数是2.b,c是常数,a是二次项系数,b是一次项系数,c是常数项.
⑵a,二、二次函数的基本形式
1.二次函数基本形式:yax2的性质:a的绝对值越大,抛物线的开口越小。
a的符号a0开口方向顶点坐标对称轴向上00,00,性质x0时,y随x的增大而增大;x0时,y随y轴x的增大而减小;x0时,y有最小值0.x0时,y随x的增大而减小;x0时,y随a0向下y轴x的增大而增大;x0时,y有最大值0.
2.yax2c的性质:上加下减。
a的符号a0开口方向顶点坐标对称轴向上c0,c0,性质x0时,y随x的增大而增大;x0时,y随y轴x的增大而减小;x0时,y有最小值c.x0时,y随x的增大而减小;x0时,y随a0向下y轴x的增大而增大;x0时,y有最大值c.
3.yaxh的性质:左加右减。
2a的符号a0开口方向顶点坐标对称轴向上0h,0h,性质xh时,y随x的增大而增大;xh时,y随X=hx的增大而减小;xh时,y有最小值0.xh时,y随x的增大而减小;xh时,y随a02向下X=hx的增大而增大;xh时,y有最大值0.
4.yaxhk的性质:
a的符号开口方向顶点坐标对称轴性质a0向上h,kh,kX=hxh时,y随x的增大而增大;xh时,y随x的增大而减小;xh时,y有最小值k.xh时,y随x的增大而减小;xh时,y随a0向下X=hx的增大而增大;xh时,y有最大值k.
三、二次函数图象的平移
1.平移步骤:
方法一:
⑴将抛物线解析式转化成顶点式yaxhk,确定其顶点坐标h,k;
⑵保持抛物线yax2的形状不变,将其顶点平移到h,k处,具体平移方法如下:
向上(k>0)【或向下(k0)【或左(h0)【或左(h0)【或下(k0)【或左(h0)【或下(k
画草图时应抓住以下几点:开口方向,对称轴,顶点,与x轴的交点,与y轴的交点.
六、二次函数yax2bxc的性质
b4acb2b1.当a0时,抛物线开口向上,对称轴为x,顶点坐标为,.
2a4a2a当xbbb时,y随x的增大而减小;当x时,y随x的增大而增大;当x时,y有最小2a2a2a4acb2值.
4ab4acb2bb2.当a0时,抛物线开口向下,对称轴为x,顶点坐标为,时,y随.当x2a4a2a2a4acb2bb.x的增大而增大;当x时,y随x的增大而减小;当x时,y有最大值
2a2a4a
七、二次函数解析式的表示方法
1.一般式:yax2bxc(a,b,c为常数,a0);
2.顶点式:ya(xh)2k(a,h,k为常数,a0);
3.两根式:ya(xx1)(xx2)(a0,x1,x2是抛物线与x轴两交点的横坐标).
注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x轴有交点,即b24ac0时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.
八、二次函数的图象与各项系数之间的关系
1.二次项系数a
二次函数yax2bxc中,a作为二次项系数,显然a0.
⑴当a0时,抛物线开口向上,a的值越大,开口越小,反之a的值越小,开口越大;
⑵当a0时,抛物线开口向下,a的值越小,开口越小,反之a的值越大,开口越大.
总结起来,a决定了抛物线开口的大小和方向,a的正负决定开口方向,a的大小决定开口的大小.
2.一次项系数b
在二次项系数a确定的前提下,b决定了抛物线的对称轴.
⑴在a0的前提下,当b0时,当b0时,当b0时,b0,即抛物线的对称轴在y轴左侧;2ab0,即抛物线的对称轴就是y轴;2ab0,即抛物线对称轴在y轴的右侧.2a⑵在a0的前提下,结论刚好与上述相反,即当b0时,当b0时,当b0时,b0,即抛物线的对称轴在y轴右侧;2ab0,即抛物线的对称轴就是y轴;2ab0,即抛物线对称轴在y轴的左侧.2a
总结起来,在a确定的前提下,b决定了抛物线对称轴的位置.
ab的符号的判定:对称轴xb在y轴左边则ab0,在y轴的右侧则ab0,概括的说就是“左同2a右异”总结:
3.常数项c
⑴当c0时,抛物线与y轴的交点在x轴上方,即抛物线与y轴交点的纵坐标为正;
⑵当c0时,抛物线与y轴的`交点为坐标原点,即抛物线与y轴交点的纵坐标为0;
⑶当c0时,抛物线与y轴的交点在x轴下方,即抛物线与y轴交点的纵坐标为负.总结起来,c决定了抛物线与y轴交点的位置.
b,c都确定,那么这条抛物线就是唯一确定的.总之,只要a,二次函数解析式的确定:
根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:
1.已知抛物线上三点的坐标,一般选用一般式;
2.已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;
3.已知抛物线与x轴的两个交点的横坐标,一般选用两根式;
4.已知抛物线上纵坐标相同的两点,常选用顶点式.
九、二次函数图象的对称
二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达
1.关于x轴对称
yax2bxc关于x轴对称后,得到的解析式是yax2bxc;
yaxhk关于x轴对称后,得到的解析式是yaxhk;
2.关于y轴对称
yax2bxc关于y轴对称后,得到的解析式是yax2bxc;
22yaxhk关于y轴对称后,得到的解析式是yaxhk;
3.关于原点对称
yax2bxc关于原点对称后,得到的解析式是yax2bxc;yaxhk关于原点对称后,得到的解析式是yaxhk;
4.关于顶点对称(即:抛物线绕顶点旋转180°)
2222b2yaxbxc关于顶点对称后,得到的解析式是yaxbxc;
2a22yaxhk关于顶点对称后,得到的解析式是yaxhk.n对称
5.关于点m,n对称后,得到的解析式是yaxh2m2nkyaxhk关于点m,根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.
十、二次函数与一元二次方程:
1.二次函数与一元二次方程的关系(二次函数与x轴交点情况):
一元二次方程ax2bxc0是二次函数yax2bxc当函数值y0时的特殊情况.图象与x轴的交点个数:
①当b24ac0时,图象与x轴交于两点Ax1,0,Bx2,0(x1x2),其中的x1,x2是一元二次
b24ac方程axbxc0a0的两根.这两点间的距离ABx2x1.
a2
②当0时,图象与x轴只有一个交点;
③当0时,图象与x轴没有交点.
1"当a0时,图象落在x轴的上方,无论x为任何实数,都有y0;
2"当a0时,图象落在x轴的下方,无论x为任何实数,都有y0.
2.抛物线yax2bxc的图象与y轴一定相交,交点坐标为(0,c);
3.二次函数常用解题方法总结:
⑴求二次函数的图象与x轴的交点坐标,需转化为一元二次方程;
⑵求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;
⑶根据图象的位置判断二次函数yax2bxc中a,b,c的符号,或由二次函数中a,b,c的符号判断图象的位置,要数形结合;
⑷二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x轴的一个交点坐标,可由对称性求出另一个交点坐标.
⑸与二次函数有关的还有二次三项式,二次三项式ax2bxc(a0)本身就是所含字母x的二次函数;下面以a0时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系:
0抛物线与x轴有两个交点0二次三项式的值可正、可零、可负二次三项式的值为非负二次三项式的值恒为正一元二次方程有两个不相等实根一元二次方程有两个相等的实数根一元二次方程无实数根.0抛物线与x轴只有一个交点抛物线与x轴无交点y=2x2y=x2y=3(x+4)2二次函数图像参考:
y=3x2y=3(x-2)2y=x22
y=2x2y=2(x-4)2y=2(x-4)2-3y=2x2+2y=2x2y=2x2-4x2y=-2y=-x2y=-2x2十一、函数的应用
刹车距离二次函数应用何时获得最大利润
最大面积是多少y=-2(x+3)2y=-2x2y=-2(x-3)2
【函数知识点总结】相关文章:
函数知识点总结06-09
函数知识点总结通用[15篇]06-09
[推荐]函数知识点总结15篇06-09
《函数》教学反思05-26
变量与函数说课稿11-20
函数的概念教学反思04-12
《对数函数》说课稿12-22
负数知识点总结01-21
《诗经》知识点总结01-31