当前位置:贤学网>范文>工作总结> 向量知识总结

向量知识总结

时间:2024-06-22 17:39:08 工作总结 我要投稿
  • 相关推荐

向量知识总结

  总结是指对某一阶段的工作、学习或思想中的经验或情况进行分析研究,做出带有规律性结论的书面材料,它可使零星的、肤浅的、表面的感性认知上升到全面的、系统的、本质的理性认识上来,不如立即行动起来写一份总结吧。总结怎么写才不会流于形式呢?以下是小编收集整理的向量知识总结,欢迎大家分享。

向量知识总结

向量知识总结1

  数学必修四知识点总结平面向量

  1、向量的加法

  向量的加法满足平行四边形法则和三角形法则。

  AB+BC=AC。

  a+b=(_+_',y+y')。

  a+0=0+a=a。

  向量加法的运算律:

  交换律:a+b=b+a;

  结合律:(a+b)+c=a+(b+c)。

  2、向量的减法

  如果a、b是互为相反的向量,那么a=—b,b=—a,a+b=0。 0的反向量为0

  AB—AC=CB。即“共同起点,指向被减”

  a=(_,y)b=(_',y')则a—b=(_—_',y—y')。

  3、数乘向量

  实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣?∣a∣。

  当λ>0时,λa与a同方向;

  当λ<0时,λa与a反方向;

  当λ=0时,λa=0,方向任意。

  当a=0时,对于任意实数λ,都有λa=0。

  注:按定义知,如果λa=0,那么λ=0或a=0。

  实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩。

  当∣λ∣>1时,表示向量a的'有向线段在原方向(λ>0)或反方向(λ<0)上伸长为原来的∣λ∣倍;

  当∣λ∣<1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上缩短为原来的∣λ∣倍。

  数与向量的乘法满足下面的运算律

  结合律:(λa)?b=λ(a?b)=(a?λb)。

  向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa。

  数对于向量的分配律(第二分配律):λ(a+b)=λa+λb。

  数乘向量的消去律:①如果实数λ≠0且λa=λb,那么a=b。②如果a≠0且λa=μa,那么λ=μ。

  4、向量的的数量积

  定义:已知两个非零向量a,b。作OA=a,OB=b,则角AOB称作向量a和向量b的夹角,记作〈a,b〉并规定0≤〈a,b〉≤π

  定义:两个向量的数量积(内积、点积)是一个数量,记作a?b。若a、b不共线,则a?b=|a|?|b|?cos〈a,b〉;若a、b共线,则a?b=+—∣a∣∣b∣。

  向量的数量积的坐标表示:a?b=_?_'+y?y'。

  向量的数量积的运算律

  a?b=b?a(交换律);

  (λa)?b=λ(a?b)(关于数乘法的结合律);

  (a+b)?c=a?c+b?c(分配律);

  向量的数量积的性质

  a?a=|a|的平方。

  a⊥b 〈=〉a?b=0。

  |a?b|≤|a|?|b|。

  向量的数量积与实数运算的主要不同点

  1、向量的数量积不满足结合律,即:(a?b)?c≠a?(b?c);例如:(a?b)^2≠a^2?b^2。

  2、向量的数量积不满足消去律,即:由a?b=a?c(a≠0),推不出b=c。

  3、|a?b|≠|a|?|b|

  4、由|a|=|b|,推不出a=b或a=—b。

  5、向量的向量积

  定义:两个向量a和b的向量积(外积、叉积)是一个向量,记作a×b。若a、b不共线,则a×b的模是:∣a×b∣=|a|?|b|?sin〈a,b〉;a×b的方向是:垂直于a和b,且a、b和a×b按这个次序构成右手系。若a、b共线,则a×b=0。

  向量的向量积性质:

  ∣a×b∣是以a和b为边的平行四边形面积。

  a×a=0。

  a‖b〈=〉a×b=0。

  向量的向量积运算律

  a×b=—b×a;

  (λa)×b=λ(a×b)=a×(λb);

  (a+b)×c=a×c+b×c。

  注:向量没有除法,“向量AB/向量CD”是没有意义的

  6、向量的三角形不等式

  1、∣∣a∣—∣b∣∣≤∣a+b∣≤∣a∣+∣b∣;

  ①当且仅当a、b反向时,左边取等号;

  ②当且仅当a、b同向时,右边取等号。

  2、∣∣a∣—∣b∣∣≤∣a—b∣≤∣a∣+∣b∣。

  ①当且仅当a、b同向时,左边取等号;

  ②当且仅当a、b反向时,右边取等号。

  7、定比分点

  定比分点公式(向量P1P=λ?向量PP2)

  设P1、P2是直线上的两点,P是l上不同于P1、P2的任意一点。则存在一个实数λ,使向量P1P=λ?向量PP2,λ叫做点P分有向线段P1P2xxx的比。

  若P1(_1,y1),P2(_2,y2),P(_,y),则有

  OP=(OP1+λOP2)(1+λ);(定比分点向量公式)

  _=(_1+λ_2)/(1+λ),y=(y1+λy2)/(1+λ)。(定比分点坐标公式)

  我们把上面的式子叫做有向线段P1P2的定比分点公式

  8、三点共线定理

  若OC=λOA+μOB,且λ+μ=1,则A、B、C三点共线

  三角形重心判断式

  在△ABC中,若GA+GB+GC=O,则G为△ABC的重心

向量知识总结2

  1、点,线,面

  点,线,面:

  ①图形是由点,线,面构成的。

  ②面与面相交得线,线与线相交得点。

  ③点动成线,线动成面,面动成体。

  展开与折叠:

  ①在棱柱中,任何相邻的两个面的交线叫做棱,侧棱是相邻两个侧面的交线,棱柱的所有侧棱长相等,棱柱的上下底面的形状相同,侧面的形状都是长方体。

  ②N棱柱就是底面图形有N条边的棱柱。

  截一个几何体:用一个平面去截一个图形,截出的面叫做截面。

  视图:主视图,左视图,俯视图。

  多边形:他们是由一些不在同一条直线上的线段依次首尾相连组成的封闭图形。

  弧、扇形:

  ①由一条弧和经过这条弧的端点的两条半径所组成的图形叫扇形。

  ②圆可以分割成若干个扇形。

  2、角

  线:

  ①线段有两个端点。

  ②将线段向一个方向无限延长就形成了射线。射线只有一个端点。

  ③将线段的两端无限延长就形成了直线。直线没有端点。

  ④经过两点有且只有一条直线。

  比较长短:

  ①两点之间的所有连线中,线段最短。

  ②两点之间线段的长度,叫做这两点之间的距离。

  角的度量与表示:

  ①角由两条具有公共端点的射线组成,两条射线的公共端点是这个角的顶点。

  ②一度的1/60是一分,一分的1/60是一秒。

  角的比较:

  ①角也可以看成是由一条射线绕着他的端点旋转而成的。

  ②一条射线绕着他的端点旋转,当终边和始边成一条直线时,xxx的角叫做平角。始边继续旋转,当他又和始边重合时,xxx的角叫做周角。

  ③从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。

  平行:①同一平面内,不相交的两条直线叫做平行线。

  ②经过直线外一点,有且只有一条直线与这条直线平行。

  ③如果两条直线都与第3条直线平行,那么这两条直线互相平行。

  垂直:①如果两条直线相交成直角,那么这两条直线互相垂直。

  ②互相垂直的两条直线的交点叫做垂足。

  ③平面内,过一点有且只有一条直线与已知直线垂直。

  垂直平分线:垂直和平分一条线段的直线叫垂直平分线。

  垂直平分线垂直平分的一定是线段,不能是射线或直线,这根据射线和直线可以无限延长有关,再看后面的,垂直平分线是一条直线,所以在画垂直平分线的时候,确定了2点后(关于画法,后面会讲)一定要把线段穿出2点。

  垂直平分线定理:

  性质定理:在垂直平分线上的点到该线段两端点的距离相等;

  判定定理:到线段2端点距离相等的点在这线段的垂直平分线上

  角平分线:把一个角平分的射线叫该角的`角平分线。

  定义中有几个要点要注意一下的,就是角的角平分线是一条射线,不是线段也不是直线,很多时,在题目中会出现直线,这是角平分线的对称轴才会用直线的,这也涉及到轨迹的问题,一个角个角平分线就是到角两边距离相等的点

  性质定理:角平分线上的点到该角两边的距离相等

  判定定理:到角的两边距离相等的点在该角的角平分线上

  正方形:一组邻边相等的矩形是正方形

  性质:正方形具有平行四边形、菱形、矩形的一切性质

  判定:

  1、对角线相等的菱形

  2、邻边相等的矩形

【向量知识总结】相关文章:

高中数学《平面向量》优秀说课稿12-16

物理知识总结03-02

护理知识总结12-14

知识培训总结04-18

太空知识总结05-22

航天知识总结11-11

小学语文的知识总结11-28

控烟知识的总结10-18

麻风知识宣传总结01-04

Copyright©2003-2024gushici.weiyujianbao.cn版权所有