当前位置:贤学网>范文>说课稿> 《比的基本性质》说课稿

《比的基本性质》说课稿

时间:2024-06-25 16:28:42 说课稿 我要投稿

《比的基本性质》说课稿15篇(优)

  作为一名默默奉献的教育工作者,可能需要进行说课稿编写工作,说课稿有助于提高教师理论素养和驾驭教材的能力。那么优秀的说课稿是什么样的呢?以下是小编收集整理的《比的基本性质》说课稿,希望能够帮助到大家。

《比的基本性质》说课稿15篇(优)

《比的基本性质》说课稿1

  一、讲教材

  1.教学内容:

  《比例的意义和基本性质》是人类教育版第十二册第三单位第一、二课时的内容。比例知识广泛应用于工农业生产和日常生活中。这部分知识是在学习比例知识、除法和分数的基础上教授的。本课程的内容是本单位的第一节课,主要属于概念教学,准备解决未来的比例,解释正反比例。学生学习这部分知识,不仅可以初步接触函数的想法,还可以用来解决日常生活中的一些具体问题。

  2、教学目标:

  以下教学目标可根据新课程标准的要求和教材的特点,结合六年级学生的实际水平确定:

  (1)通过计算、观察和比较,让学生总结和理解比例的意义和基本性质。

  (2)了解比例各部分的名称。

  (3)学会用比例的意义或基本性质来判断两个比例是否能形成比例,并写出比例。

  教学重、难:

  要理解比例的意义和基本性质,我们将判断比例的意义和基本性质是否可以形成比例,并写出比例。

  四、教法、学法:

  根据本节教材的内容和安排特点,为了更好地突出重点和难点,遵循以教师为主导、以学生为主体、以培训为主线的指导思想,主要让学生在计算观察、比较、总结、应用的学习过程中掌握知识。

  二、说程序设计

  课堂教学是学生获得数学知识和发展能力的重要途径。基于此,我设计了以下教学设计。

  (一)复习导入

  让学生根据给出的信息写两个比例。目的是为新教学铺平道路,搭建脚手架,为学生区分比例和比例奠定基础。

  (二)教新课

  分为两部分:第一部分,教学比例的意义;第二部分,教学比例的基本性质。

  第一部分:首先显示几个比例,让学生计算他们的比例,然后通过观察和比较对这些比例进行分类。通过学生自己的观察和发现,根据比例是否相等进行分类。然后问:两个比例的比例是相等的,那么它们之间可以连接到什么符号呢?这是为了让学生深刻地理解,只要两个比例的比例相等,就可以说两个比例相等。使用黑板上的几个比例,告诉学生这样的公式被称为比例,给学生一个直观的印象,然后列出一个反例,让学生比较观察,引导学生发现他们之间的共同特征,抽象地总结比例的意义。教学比例的意义后,及时组织实践。第一个是判断导入部分的四个比例是否可以形成比例,并解释原因。第二个练习是判断两个比例是否可以形成比例。在这个过程中,不仅使用了比例的意义,而且对比的性质也有一定的应用,以培养学生从多个角度解决问题的能力。第三个练习是每个比例的延伸,每个练习都是为了解决问题的能力。

  第二部分:当我知道比例的名称时,我让学生看课件自学,然后让他们谈谈比例的名称。

  在揭示比例的基本性质时,我先让学生计算,然后观察和发现规则,进一步验证规则,最后总结比例的基本性质。

  (三)巩固练习

  在巩固实践过程中,第一个问题是三个判断问题,即巩固基本概念。第二个问题是根据比例的基本性质写出比例。这里需要从学生逆向思维的.角度来解决问题。第三个问题是使用四个数组的比例。学生在小组过程中没有方法和顺序。在沟通过程中,教师需要引导学生找到方法,总结规则,使学生不仅能正确地解决问题,还能引导自己更好地解决问题。第四个问题是扩展问题,让学生根据当前的知识猜测,一方面巩固知识的意义和基本性质,另一方面,为下一节课解决比例铺平道路:根据比例的基本性质,如果你知道任何三个比例,你可以找到另一个,这是下一节课要研究的解决比例。

  教学反思

  有意义的数学学习必须以学生的主观愿望和知识经验为基础。有效的数学学习活动不能仅仅依赖于模仿和记忆。实践、独立探索和合作交流是学生学习数学的重要途径。在教学中,我有效地处理了教科书,让学生理解比例的意义,探索比例的基本性质,了解生活的比例,进一步认识到数学在生活中的广泛应用,激发学生学习数学的信心和积极情绪。

  一、创设探究空间,经历探索过程

  我大胆地组织学生探索比例的基本性质,没有根据教科书中提供的现成问题你发现了什么分别计算两个外项和两个内项的比例?机械地实施,但大胆地放手,用四个数组成等式的开放实践产生新鲜有用的教学资源。通过引导学生进行讨论和有效的探索,我经历了探索的成功。

  二、找到知识与生活的契合点,学以致用

  为了充分体现数学知识与现实生活的联系,我在课堂结束时安排了与生活相关的数学问题,让学生测量我们学校旗杆的高度,将数学与现实紧密联系起来,这不仅渗透了学习数学的教学理念,而且潜移默化地帮助学生树立学习文化知识有利于社会发展的意识

《比的基本性质》说课稿2

  一、说教材

  1、教材所处的地位和作用:《比的基本性质》是小学数学人教版六年级上册第四单元第二课时。它是在学生学习商不变性质、分数的基本性质、比的意义、比和除法的关系、比和分数的关系的基础上组织教学的。比的基本性质是一节概念课的教学,它跟分数的基本性质、商不变性质实际上是同一道理的。所以本节课主要是处理新旧知识间的联系,在巩固旧知识的基础上进入到学习新知识。教材内容渗透着事物之间是普遍联系和互相转化的辩证唯物主义观点。学生理解并掌握比的基本性质,不但能加深对商不变性质、分数的基本性质、比的意义、比和分数、比和除法等知识的理解与掌握,而且也为以后学习比的应用,比例知识,正、反比例打好基础。

  2、教学目标

  根据上述教材结构与内容分析,考虑到学生已有的认知结构心理特征,制定以下教学目标:

  (1)使学生在现实情境中理解并掌握比的基本性质,能应用比的意义和基本性质化简比,掌握化简比的方法,能正确地化简比。

  (2)通过教学培养学生的抽象概括能力,渗透转化的数学思想,并使学生认识事物之间都是存在内在联系的。

  (3)使学生在经历猜想、验证、发现等思维过程,感受数学知识和方法的应用价值,增强自主探索与合作交流的意识,提高学好数学的自信心。

  3、教学重点、难点

  本着课程标准,在吃透教材基础上,我确立了如下的教学重点、难点。

  教学重点:理解比的基本性质。

  教学难点:运用比的基本性质化简比。

  二、说学情

  六年级学生已掌握除法的基本性质、分数的基本性质、比的意义、比和除法的关系、比和分数的关系等知识,这都是学习比的基本性质的基础,而且六年级学生已具有类比和知识迁移能力,所以要根据除法的基本性质和分数的基本性质猜想比的基本性质并不难,关键是在于应用,即化简比,对学生来说,如何将分数比和小数比转化成整数比是个难点。

  三、说教法、学法

  1、复习铺垫,使学生领悟利用旧知学习新知的学习方法。沟通知识间的联系。

  2、猜想激趣,通过猜想激发学生的兴趣。

  3、引导学生通过观察、对比、类推总结出比的基本性质,并通过尝试、讨论等方法进行化简比,既发挥教师的主导作用,又体现学生的自主学习。

  四、教学程序

  基于以上分析,我把教学程序分五大环节进行:

  (一)复习铺垫,创设问题情境。从复习商不变的性质及分数的基本性质入手,为学生类推出比的基本性质打下铺垫,渗透转化的数学思想,使学生感受事物间存在着紧密的内在联系,符合学生认识事物的规律和迁移规律。

  在课堂教学中创设情境,把问题隐藏在情境之中,形成悬念,引起学生迫不及待地探索和研究。这样不仅能激发学生学习数学的兴趣,同时还能给学生提供自主探索的机会,让学生在自主探索中建构数学知识。在学生复习了分数的基本性质和商不变的性质后,及时提出问题——比是不是也有类似性质呢?如果有的话,你认为它是怎么样呢?有的学生根据分数与比的关系、分数与除法的关系后就自然而然的猜想出比可能会有基本性质。通过这样的引导,紧紧抓住了学生的心。他们很想弄清楚:比有没有类似商那样的规律和分数那样的性质,使他们产生强烈的探究欲望。

  (二)猜想验证,得出结论。

  在激发学生认知需要和探究欲望后,怎样才能让学生的思维卷入知识发现的过程呢?这时教师要起到引导者的作用,引导学生探究性的学习活动,让学生感受探究过程。这样不仅让学生学到科学探究的方法,还培养了学生主动获取知识的能力,同时本课的教学教学重点得以体现。

  (三)运用结论,解决问题。

  当讲完了比的基本性质后出了两道较有代表性的.化简比的例题,让学生在做的过程中归纳和整理出化简比的方法,学生做完后交流中发现解法都有不只一种,通过交流探讨,小结出一套比较切合实际的方法。

  1、化简时,比的前项和后项都是整数时,可以同时除以两个数的最大公因数。

  2、是小数比的,先扩大相同的倍数转化为整数比→最简比,

  3、是分数比的,先同时乘两个分母的最小公倍数转化为整数比→最简比,也可以用求比值的方法化简。但要注意,这个结果必须是一个比。学生亲身经历了化简比的过程,参与了知识的运用过程,体验到运用结论解决问题的乐趣与快乐。教学难点在师生互动交流中得以体现。

  (四)巩固反馈,积累提升。

  在这个环节我设计了化简比、判断、填空几种类型的练习题,通过步步深入的学习交流活动,学生对比的基本性质探究更深入,理解更完善。最后的拓展性练习,使学生思维发散,联系实际,运用规律,激发学生不断探索新知的欲望。

  (五)全课小结,强化认识。 “通过今天的学习,你又学习了哪些知识?你有什么收获?”开放性的总结形式给学生提供一个畅所欲言的课堂氛围,在课堂上总结所学,交流心得,进一步把所学知识进行梳理,形成知识网络,加深印象。

  五、课后反思:

  比的基本性质这一课,我充分利用学生的已有知识,从把握新旧知识的相互联系开始,从分析它们的相似之处入手,通过让学生联想、猜测、类推、验证等方法探讨“比的基本性质”这一规律。由于在推导比的基本性质时要用到比与除法、分数的联系,除法的商不变性质,分数的基本性质等知识,因此教学新课时对这些知识做了一些复习,引导学生回忆并运用这两条性质,为下一步的猜想和类推做好了知识上的准备。事实也证明,成功的铺垫有利于新课的开展。学生通过比与除法、分数的联系,通过类比,很快地类推出比的基本性质。这样一来节省了很多的时间,二来也让学生初步感知了新知识。在应用比的基本性质化简比的时候采用讲练结合、对比总结、质疑探索、概括归纳的方法掌握化简方法突破难点。最后通过练习应用知识、深化知识,形成清晰的知识体系。本节课的不足是用求比值的方法化简比没讲到。由于时间紧张给学生说的时间太短。

《比的基本性质》说课稿3

  我今天说课的题目是《不等式的基本性质》,主要分四块内容进行说课:教材分析;教学方法的选择;学法指导;教学流程。

  一、教材分析:

  1.教材的地位和作用

  本节课的内容是选自人教版义务课程标准实验教科书七年级下第九章第一节第二课时《不等式的基本性质》,这是继方程后的又一种代数形式,继承了方程的有关思想,并实现了数形结合的思想。是初中数学教学的重点和难点,对进一步学习一次函数的性质及应用有着及其重大的作用。

  2.教学目标的确定

  教学目标分为三个层次的目标:

  ⑴知识目标:主要是理解并掌握不等式的三个基本性质。

  ⑵能力目标:培养学生利用类比的思想来探索新知的能力,扩充和完善不等式的性质的能力。

  ⑶情感目标:让学生感受到数学学习的猜想与归纳的思维方式,体会类比思想和获得成功的喜悦。

  3.教学重点和难点

  不等式的三个基本性质是本节课的中心,是学生必须掌握的内容,所以我确定本节的教学重点是不等式三个基本性质的学习以及用不等式的性质解不等式。本节课的难点是用不等式的性质化简。

  二、教学方法、教学手段的选择:

  本节课在性质讲解中我采取探索式教学方法,即采取观察猜测---直观验证---托盘实验---得出性质。使学生主动参与提出问题和探索问题的过程,从而激发学生的学习兴趣,活跃学生的思维。为了突破学生对不等式性质应用的困难,采取了类比操作化抽象为具体的方法来设置教学。整节课采取精讲多练、讲练结合的方法来落实知识点。

  三、学法指导:

  鉴于七年级的学生理解能力和逻辑推理能力还比较薄弱,应以激励的原则进行有效的教学。鼓励学生一种类型的题多练,并及时引导学生用小结方法,克服思维定势。

  例题讲解采取数形结合的方法,使学生树立“转化”的数学思想。充分复习旧知识,使获取新知识的过程成为水到渠成,增强学生学习的成就感及自信心,从而培养浓厚的学习兴趣。

  四、(主要环节)教学流程:

  1.创设情境,复习引入

  等式的基本性质是什么?

  学生活动:独立思考,指名回答.

  教师活动:注意强调等式两边都乘以或除以(除数不为0)同一个数,所得结果仍是等式.

  请同学们继续观察习题:

  观察:用“”或“”填空,并找一找其中的'规律.

  (1)55+2____3+2,5-2____3-2

  (2)–1,-1+2____3+2,-1-3____3-3

  (3)6>2,6×5____2×5,6×(-5)____2×(-5)

  (4)–2(-2)×6____3×6,(-2)×(-6)____3×(-6)

  学生活动:观察思考,两个(或几个)学生回答问题,由其他学生判断正误.

  五、教法说明

  设置上述习题是为了温故而知新,为学习本节内容提供必要的知识准备.

  不等式有哪些基本性质呢?研究时要与等式的性质进行对比,大家知道,等式两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式(实质是移项法则),请同学们观察①②题,并猜想出不等式的性质.

  学生活动:观察思考,猜想出不等式的性质.

  教师活动:及时纠正学生叙述中出现的问题,特别强调指出:“仍是不等式”包括两种情况,说法不确切,一定要改为“不等号的方向不变或者不等号的方向改变.”

  师生活动:师生共同叙述不等式的性质,同时教师板书.

  不等式基本性质1不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变.

  对比等式两边都乘(或除以)同一个数的性质(强调所乘的数可正、可负、也可为0)请大家思考,不等式类似的性质会怎样?

  学生活动:观察③④题,并将题中的5换成2,-5换成一2,按题的要求再做一遍,并猜想讨论出结论.

  六、教法说明

  观察时,引导学生注意不等号的方向,用彩色粉笔标出来,并设疑“原因何在?”两边都乘(或除以)同一个负数呢?为什么?

  师生活动:由学生概括总结不等式的其他性质,同时教师板书.

  不等式基本性质2不等式两边都乘(或除以)同一个正数,不等号的方向不变.

  不等式基本性质3不等式两边都乘(或除以)同一个负数,不等号的方向改变.

  师生活动:将不等式-2<3两边都加上7,-9,两边都乘3,-3试一试,进一步验证上面得出的三条结论.

  学生活动:看课本第124页有关不等式性质的叙述,理解字句并默记.

  强调:要特别注意不等式基本性质3.

  实质:不等式的三条基本性质实质上是对不等式两边进行“+”、“-”、“×”、“÷”四则运算,当进行“+”、“-”法时,不等号方向不变;当乘(或除以)同一个正数时,不等号方向不变;只有当乘(或除以)同一个负数时,不等号的方向才改变.

  学生活动:思考、同桌讨论.

  归纳:只有乘(或除以)负数时不同,此外都类似.

  (1)如果x-54,那么两边都可得到x9

  (2)如果在-78的两边都加上9可得到

  (3)如果在5-2的两边都加上a+2可得到

  (4)如果在-3-4的两边都乘以7可得到

  (5)如果在80的两边都乘以8可得到

  师生活动:学生思考出答案,教师订正,并强调不等式性质的应用.

  2.尝试反馈,巩固知识

  请学生先根据自己的理解,解答下面习题.

  例1 利用不等式的性质解下列不等式并用数轴表示解集.

  (1)x-7>26(2)-4x≥3

  学生活动:学生独立思考完成,然后一个(或几个)学生回答结果.

  教师板书(1)(2)题解题过程.(3)(4)题由学生在练习本上完成,指定两个学生板演,然后师生共同判断板演是否正确.

  七、教法说明

  解题时要引导学生与解一元一次方程的思路进行对比,并将原题与或对照,看用哪条性质能达到题目要求,要强调每步的理论依据,尤其要注意不等式基本性质3与基本性质2的区别,解题时书写要规范.【教法说明】要让学生明白推理要有依据,以后作类似的练习时,都写出根据,逐步培养学生的逻辑思维能力.

  (四)总结、扩展

  本节重点:

  (1)掌握不等式的三条基本性质,尤其是性质3.

  (2)能正确应用性质对不等式进行变形.

  (五)课外思考

  对比不等式性质与等式性质的异同点.

  八、布置作业

《比的基本性质》说课稿4

  今天我说课的内容是《分式的基本性质》。

  下面我将从:教材分析、教学目标、教法分析、教学过程分析、教学设计说明等几个方面对我的教学设计进行说明。

  一、教材分析

  1、教材的地位及作用

  “分式的基本性质(第1课时)”是人教版八年级数学下册第十六章第一节“分式”的重点内容之一,是在小学学习了分数的基本性质的基础上进行的,是分式变形的依据,也是进一步学习分式的通分、约分及四则运算的基础,使学生掌握本节内容是学好本章及以后学习方程、函数等问题的关键,对后续学习有重要影响。

  2、学生情况分析

  学习的过程是自我生成的过程,其基础是学生原有的知识。在学习本节课之前,学生原有的知识市分数的基本性质的运用。八年级学生一方面可能会对原有知识有所遗忘,从心理上愿意去验证,愿意去猜想,从而激活原有知识;另一方面,八年级学生已经具备了一定的归纳总结能力,那么如何让学生灵活运用分式的基本性质进行化简就是本节内容要突破的难点。

  3、教学重难点分析

  根据以上学习任务和学情分析,确定本节课的教学重难点如下:

  教学重点:理解并掌握分式的基本性质,对分式基本性质的理解及其初步运用。

  教学难点:灵活运用分式的基本性质,进行分式化简、变形。

  二、教学目标

  教学目标应该从知识与技能、过程与方法、情感态度与价值观三个方面体现,而在教学过程中,这三个方面应该是相互融合的,相互补充的,因此我确定本课教学目标是:

  1、了解分式的基本性质。灵活运用“性质”进行分式的变形。

  2、通过类比、探索分数的基本性质,探索分式的基本性质,初步掌握类比的思想方法,积累数学活动经验。

  3、通过研究解决问题的过程,体验合作的快乐和成功,培养与他人交流的能力,增强合作交流的的意识。

  三、教法分析

  1、教学方法

  基于本节课的特点:课堂教学采用了“问题—观察—思考—提高”的步骤,使学生初步体验到数学是一个充满着观察、思考、归纳、类比和猜测的探索过程。

  根据教材分析和目标分析,贯彻新课程改革下的课堂教学方法,确定本节课主要采用启发引导探索的教学方法。学生在教师营造的“可探索”的环境里,积极参与,互相讨论,一步步地理解分式的基本性质,并通过应用此性质进行不同的练习,让学生得到更深刻的体会,实现教学目标。

  2、学法指导

  本堂课立足于学生的“学”,要求学生多动手,多观察,从而可以帮助学生形成分析、对比、归纳的思想方法。在对比和讨论中让学生在“做中学”,提高学生利用已学知识去主动获取新知识的能力。要达到学生主动的学习,本节课采用学生小组合作,讨论交流,观察发现,师生互动的学习方式。学生通过小组合作学会主动探究-主动总结-主动提高,突出学生是学习的主体,他们在感知知识的过程中,无疑提高了探索-发现-实践-总结的能力。

  因此在课堂上要采用积极引导学生主动参与,合作交流的方法组织教学,使学生真正成为教学的主体,体会参与的乐趣,成功的喜悦,感知数学的奇妙。

  四、教学准备

  多媒体课件,小黑板

  五、教学过程

  活动1:复习分数的基本性质

  在教学过程中,为了达到激活学生原有的知识,,同时通过对已有知识的回顾引入新课,我设计了以下的情景导入:

  1、下列分数是否相等?可以进行变形的依据是什么?

  2、分数的基本性质是什么?怎样用式子表示?

  老师演示课件,学生独立思考并举手发言,最后老师总结,演示分数的基本性质。

  设计意图:通过复习分数的通分、约分总结出分数的基本性质,激活学生原有的知识,为学习分式的基本性质做好铺垫。

  这里我通过问题情境的创设,引发学生的兴趣,由复习分数的基本性质自然过度到新知识的引入,为后面的学习埋下伏笔,为同学自主学习提供了知识基础。

  活动2:类比得出分式的基本性质

  因为有了导入问题引发的思考,我借着学生们刚进入良好的学习、思考状态,马上提出问题:

  1、类比分数的基本性质,你能猜想出分式有什么性质吗?

  2、你能用语言来描述分式的基本性质吗?

  3、类比分数的基本性质,在理解分式基本性质时应注意那几方面?

  老师逐一演示问题,学生分组讨论并派代表发言,老师从中加以引导,再由师生共同总结出分式的基本性质。

  设计意图:让学生自己运用类比的方法发现分式的.基本性质,并通过合作交流,更好地总结出分式的基本性质,从而实现了学生主动参与、探究新知识的目的。

  同时,我组织学生进行全班讨论、交流,通过互相补充以及教师适时的引导,学生们总结出:

  1、分式与分数有相同的形式,只是分式的分子和分母都是整式;

  2、分式其实就是用字母代替数得到的,即分式中的字母本身就代表某个数,因此分数的基本性质也应该适用于分式。

  在此基础上,我们进一步总结得到:

  1、分式的基本性质:

  分式的分子与分母同乘以(或除以)不为零的整式,分式的值不变。

  2、分式的基本性质中应该注意:

  (1)充分理解“同时”这个词的含义,它包含两层意义:分子、分母同时乘以或除以,同一个整式;

  (2)注意括号内的限制条件:M、N是不为零的整式,若M、N=0,则分式就没有意义了;

  (3)此性质的隐含条件是:分式中,B≠0。

  设计意图:一方面检查学生对“性质”的认识程度,另一方面通过学生的思考与归纳,进一步加深对“性质”理解。

  我在这里的设计,主要原因是:

  1、运用类比思想让学生通过知识迁移学习新知,比教师讲授更能加深学生的理解。

  2、体验“类比”思想和方法,有利于学生学习能力的提高;

  3、学生的理解层次尚浅,需要教师适时的点拨与归纳,因此,提出问题时应引起学生的关注,强化对性质的理解。

  活动3:初步应用分式的基本性质

  课件展示例题,学生独立思考问题,然后小组讨论,老师巡堂给予指导,最后由学生总结出解题经验。

  1)课本第10页例2填空:

  2)设计意图:例2是分式基本性质的运用,让学生研究每一题的特点,紧扣“性质”进行分析,以期达到理解并掌握性质的目的。

  活动4:练习巩固拓展知识

  课堂练习:

  (1)课本第11页4.下列各组中的两个分式是否相等?为什么?

  (2)不改变分式的值,使分子、分母里的系数变为整数:

  教师展示练习学生独立思考,老师巡堂并进行个别辅导,然后,对于第1题,进行个别提问;第2题,叫两名学生到黑板演示。

  设计意图:练习第1题承接着例题而来,让学生更好地体会“性质”的应用,并为下一节学习分式的约分做铺垫;第2题,强化训练为了培养学生用“性质”解决问题的能力。

  拓展训练:

  课本第11页5.不改变分式的值,使下列分式分子和分母都不含“-”号

  学生组内讨论,老师巡堂参与交流,引导学生发现规律,并综合各小组的不同意见,有针对性地进行讲解,归纳出变号法则。

  分式的变号法则(板书)

  分式本身及其分子、分母这三处的正负号中,同时改变两处,分式的值不改变,即:

  设计意图:介绍分式的变号法则,是为了让学生结合有理数的除法法则,更深刻地理解分式的基本性质。

  活动5:小结评价布置作业

  小结:

  1)分式的基本性质是什么?

  2)运用分式基本性质时要注意什么?

  3)分式变号的法则是怎样的?

  展示问题,学生思考,并在老师的引导下,学生自己进行整理、归纳。

  设计意图:通过小结,使学生对本节所学内容进一步系统化,使学生的知识结构更合理、更完善。

  小结完成后,为了同学能够有针对性地进行小结,我准备了三个问题:

  1)这节课你学到了什么?

  2)这节课给你的印象最深的是什么?

  3)你如何评价你自己、同学或老师的表现?

  但在课堂上,不要限制他们,让他们畅所欲言,学生会有教师想象不到的精彩。

  【布置作业】

  下课铃响了,我布置作业:

  1、课本P65的习题4;

  补充作业:

  布置作业:课本第12页习题16.1第12题;

  设计意图:通过适量的练习有利于学生掌握所学内容,对于学有余力的同学还应该给他们足够的发展空间,让他们多做同步训练。

  这节课,我通过五个活动的教学设计,既遵循了概念教学的规律,又符合初中生的认知特点,指导学生操作、观察、引导概括,获取新知;同时注重培养学生由感性认识上升为理性认识。在教学过程中让学生动口、动手、动眼、动脑为主的学习方法,使学生学有兴趣、学有所获。

《比的基本性质》说课稿5

  一、教材分析

  1、 教材内容

  《分数的基本性质》这一课是课改版小学数学教材第十册的教学内容,学习本内容之前,学生已清楚理解分数的意义,明确分数与除法的关系,商不变性质等知识,这些都为本课学习做了知识上的铺垫。分数的基本性质是一种规律性知识,分数的分子分母变了,分数的大小会变吗?分数的分子分母如何变化,分数的大小不变呢?学生在这种变与不变中发现规律。

  2、知识间的联系:

  七册:商不变性质 十册:分数的基本性质 十二册:比的基本性质

  同时《分数的基本性质》也是学生学习分数加减法的基础。所以,本节课的教学内容具有比较重要的地位。

  二、指导思想与设计理念

  新的课程标准提出:教师应向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法。

  根据这一新的理念,我认为教师可以为学生创设一种大问题背景下的探索活动,使学生在一种动态的探索过程中自己发现分数的基本性质,从而体验发现真理的曲折和快乐,感受数学的思想方法,体会科学的学习方法。所以,教师的着眼点,不能只是规律的结论和应用,而应有意识地突出思想和方法。基于以上思考,本课让学生经历:旧知唤醒(复习商不变性质与分数与除法的关系)新知猜想(分数中是否有类似的性质,如果有,是一个什么样的性质?)实践探究(看图分类)得出结论(研究卡)深化认识(对结论的理解,尝试练习,理解其中的变与不变,能用字母来表示式子)练习提高(基本题、综合题、加深题)数学建模(用字母来表示分数的基本性质)建立联系(分数的基本性质与商不变性质的联系)。让学生对于分数的基本性质能在数学的层面上有一个较为完整、清晰与明确的掌握。

  三、学情分析

  前测:(问卷形式)

  问题1:你知道分数的基本性质吗?你是怎样理解的,试着举例说明。

  2:试着做一做下面这些题比较大小:

  4/7○2/7 1/2○2/4 3/5○9/15

  分析:暂无

  结论:暂无

  四、教学目标及重难点

  教学目标:

  1、让学生经历分数基本性质的探究过程,理解和掌握分数的基本性质,初步建立数学模型。

  2、利用分数的基本性质把一个分数化为指定分母(或分子)而大小不变的分数。

  3、培养学生的观察、概括等思维能力及(渗透变与不变)数学学习兴趣。

  教学重点:

  理解掌握分数的基本性质,它是约分,通分的依据

  解决策略:通过让学生经历猜想验证得出结论实践练习这样的学习过程,掌握知识的要点:什么是同时?方法是:乘或除以,要点:相同的数(0除外),最终:分数的大小不变。

  教学难点:

  理解和掌握分数的基本性质。

  解决策略:通过初步建立数学模型,使学生对分数的基本性质这个结论能够摆脱表象的依赖,即对具体事物或图例,从而从而成熟地思考、理解。

  五、教法学法:

  教法:树立以以学生发展为本、以学定教的思想,为实现教学目标,有效地突出重点、突破难点,我遵循学生的认知规律,以建构主义学习理论为指导,在探究分数的基本性质过程中,采取学生动手操作、小组讨论、合作探究等方式,引导学生进行比较、观察、分析,充分运用知识迁移的规律,在感知的基础上加以抽象、概括,进行归纳整理,采取迁移教学法、引导发现法组织教学。

  学法:有效的数学学习活动,不能单纯模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。在学习例题的过程中学生主要采用自学尝试法,独立自主地学习将分数化成分母不同但大小相同的分数,并尝试完成做一做,达到检验自学的目的。通过观察、比较、提出问题并解决问题来进行自主探索与合作交流,充分发挥学生主体参与作用、激发学生学习爱好,同时让学生获得成功体验。

  六、教学过程

  一、迁移旧知.提出猜想

  1回忆旧知

  活动:猜信封。通过猜信封中的数或算式,引导学生回忆分数与除法的关系。媒体演示:分数与除法的关系:

  被除数除数=

  通过谁能说一道与23商一样的'除法算式?引导学生回忆什么是商不变的性质?媒体出示:商不变的性质:

  被除数和除数同时乘或除以相同的数(零除外),商不变。

  2、提出猜想:

  既然分数与除法的关系这么紧密.除法有商不变性质,那分数是否也会有这样的性质,请大家大胆猜想一下。学生汇报后投影出示:分数的分子和分母同时乘或除以相同的数(零除外),分数的大小不变。

  二、验证猜想,建构新知

  环节1、 看图分类

  下面是一组相等的正方形,请写出每个图形阴影部分所表示的分数,并把相同的分数分在一起。

  通过动手操作,使学生不仅明白它们相等,渗透它们是因为什么而相等的为后面的实验做好准备,避免学生出现盲目行动,同时也是为学生探究方法的多元化创造条件。

  环节2、 讨论方法

  师:你是怎么判断它们相等的?

  师:它们相等,用算式可以怎么表示?

  1/2 = 2/4 = 4/8

  通过让学生表述怎么判断它们相等的锻炼学生的表达能力。

  3、研究规律

  第一层:师:这些相等的式子,除了我们从图上看到的大小相等之外,还有没有其他的秘密呢?

  利用研究卡进行研究。

  确定的研究对象

  分子和分母同时乘上或者

  除以一个相同的数

  得到的分数

  研究对象与得到的分数相等吗?

  相等( )不相等()

  猜想是否成立?

  成立( )不成立( )

  充分利用学生的生成资源:揭示课题:分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。

  第二层:教师通过追问和简单的练习重点处理分数基本性质的关键词,渗透变与不变的数学思想。

  师:为什么要0除外?

  师:对于这句话,你是怎么理解的?(让学生互相讨论,并进行说明。)

  练习:2/3=( )/18、 6/21=2/( )、 3/5=21/( )、 27/39=( )/13

  师:这里面什么变了,什么不变?(生:分子和分母变了,但分数的大小不变)

  师:分子与分母是怎样变化的?(同时乘或除以相同的数,0除外)

  师:分数的基本性质与商不变性质有什么联系?

  环节4、质疑完善

  3/4 = 3( )/ 4( )

  师:括号中可以填哪些数?

  预设:可以填无数个数

  师:如果只用一个数来表示,填什么数好?

  预设:字母

  师:这个字母有什么特殊要求吗?(0除外)

  得到一个初级的数学模型。3/4= 3X/ 4X(X0)

  让学生打开课本进行阅读、内化,并想一想还有什么问题吗?

  通过这个环节的练习,进行第一次数学建构。

  三、 练习升华

  通过以下练习进一步巩固分数的基本性质,使学生初步利用分数的基本性质把一个分数化为指定分母(或分子)而大小不变的分数。

  1、5/7=( )/35 、3/4=9/( )、 3/( )=12/20、 16/24=( )/3

  2、把5/6和1/4都化为分母为12而大小不变的分数。

  3、把2/3和3/4都化为分子为6而大小不变的分数。

  4、把2/5的分子加上2以后,要使分数的大小不变,分母应加上多少?

  5、 和 哪一个分数大,你能讲出判断的依据吗?

  四、总结延伸

  师:这节课学了什么?

  师:如果一个分数为A/B,你能用一个式子来表示分数的基本性质吗?

  A/B=AX/ 4X(X0)或A/B=AX/ 4X(X0)

  在这个环节中,数学的模型才真正的建立。模型一方面便于学生记忆,便于学生理解意义,而且数学化地表示数学也是高年级学生所必备的。

  五、作业p87-1、2

  板书设计

  分数基本性质

  分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。

  68

  34

  1216

《比的基本性质》说课稿6

  各位老师:

  下午好!我今天说课的内容是北师大版小学数学第九册《分数基本性质》首先,对教材进行分析。

  一、教材分析

  《分数基本性质》是北师大版小学数学第九册内容。是在三年级下册已经体验了分数产生的过程,认识了整体“1”,初步理解了分数的意义,能认、读、写简单的分数,会简单的同分母分数加减法的基础上,学习真假分数,分数基本性质,约分通分、比大小等知识,为后续学习分数与小数互化、分数乘除法四则混合运算打好基础。

  二、学情分析

  学生已经知道了真假分数,掌握了分数与除数的关系及商不变性质,再来学习分数基本性质。分数的基本性质是一种规律性知识,分数的分子分母变了,分数的大小却不变。学生在这种“变”与“不变”中发现规律,掌握新知识。

  根据教材分析和学生情况,制定如下教学目标

  三、教学目标

  1.知识目标:经历探索分数基本性质的过程,理解并掌握分数的基本性质,能运用分数的基本性质把一个分数化成指定分母(或分子)而大小不变的分数。

  2.能力目标:培养学生观察、比较、抽象、概括等初步的逻辑思维能力,并且能够正确认识和理解变与不变的辨证关系。

  3.情感目标:经历观察、操作和讨论等数学学习活动使学生进一步体验数学学习的乐趣。通过学生的成功体验,培养学生热爱数学的情感。

  依据教学目标,确定教学重难点

  四、教学重难点

  能运用分数的基本性质把一个分数化成指定分母(或分子)而大小不变的分数

  理解分数基本性质的含义,掌握分数基本性质的推导过程。

  五、教学方法

  根据本节课的'教学内容和教学目标采用讲授法,小组合作学习。

  六、教具学具准备

  准备大小相等的圆形纸片,水彩笔等。

  七、教学过程:分六个环节

  (一)故事设疑,揭示课题。我将以唐僧师徒分饼的故事创设问题情景。八戒吃第一块饼的14,沙和尚吃第二块饼的28,悟空吃第三块饼的416,他们谁吃的多呢?以此引入新课,激发学生思考的兴趣,积极参与到课堂教学中来。并在这个环节设计学生动手折、画、标等活动,折出14,28,416,用彩笔在折的圆上涂出14,28,416,再用铅笔标出分数。在动手做的过程中初步理解分数基本性质。

  (二)合作探索,寻找规律。请同学们观察14,28,416 ; 3|4,68,1216这两组分数,分子分母有什么变化,分数又有什么变化?组织讨论交流汇报。如果没有概括出“把0除外”就设计一组练习:分子分母同乘0,完善结论;如果概括出来了,就顺势进行验证。推导出分数基本性质-----分数的分子分母都乘或除以相同的数(0除外),分数的大小不变。

  (三)巩固练习。

  练习题的设计有简单到复杂,例:分数的分子乘5,要使分数的大小不变,分母 ( );23=()18621=2()等这样的题,进行练习。

  (四)梳理知识,沟通联系。

  小结分数基本性质,请同学们回忆“商不变性质”。------在除法中,被除数和除数同时扩大(或缩小)相同的倍数(零除外),商不变。

  然后比较这两个性质的联系。这样设计主要是为了共建知识之间的联系,有助于学生灵活迁移应用,触类旁通。

  (五)多层练习,巩固深化。

  我将设计从巩固到思维拓展三个层次的练习。

  1.

  2. (1)把5/6和1/4化为分母为12而大小不变的分数。

  (2)把2/3和3/4化为分子为6而大小不变的分数。

  3.考考你:1/4的分子加上3,要使分数的大小不变,分母应加上( )。

  (六)全课小结

  现在让我们看板书,回忆这节课学到了什么知识,比上眼睛想一想,觉得把内容记下了,就微笑一下,是不是觉得学习是件快乐的是呢?

《比的基本性质》说课稿7

  分数的基本性质

  1、使学生理解和掌握分数的基本性质,能应用“性质”解决一些简单问题。

  2、培养学生观察、分析、思考和抽象、概括的能力。

  3、渗透“形式与实质”的辩证唯物主义观点,使学生受到思想 教育 。

  教学 过程

  一、好的,让我来为您修改这段内容:在前面的学习中,我们已经了解了分数的概念,知道了真分数、假分数和带分数的含义,也学会了假分数与带分数、整数之间的转化方法。今天我们将继续深入学习分数相关的知识。

  二、导入新课例1、用分数表示下面各图中的阴影部分,并比较它们的大小。

  1、分别出示每一个圆,让学生说出表示阴影部分的分数。

  (1)把这个圆看做单位1,阴影部分占圆的几分之几?

  (2)同样大的圆,阴影部分占圆的几分之几?

  (3)同样大的圆,阴影部分用分数表示是多少?

  2、观察比较阴影部分的大小:

  (1)从4幅图上看,阴影部分的大小怎么样?(阴影部分的大小相等。)

  (2)阴影部分的大小相等,可以用等号连接起来。

  3、分析、推导出表示阴影部分的分数的大小也相等:

  (1)这4幅图中阴影部分的面积相等。那么,这意味着这4个分数的大小也相等。

  (2)它们的大小相等,也可以用等号连接起来(把4个分数用等号连起来)。

  4、观察、分析相等的分数之间有什么关系?

  (1)观察转化成,的分子、分母发生了什么变化?(的分子、分母都乘上了2或的分子、分母都扩大了2倍。)

  (2)观察例2、比较的大小。

  1、出示图:我们在三条同样的数轴上分别表示这三个分数。

  2、观察数轴上三个点的位置,比较三个分数的大小:从数轴上可以看出:

  3、这三个分数在形式上看起来不同,但实质上它们都是相等的。我们可以通过不同的方法将它们转化为相等的形式。让我们一起探讨一下这三个分数之间的联系和变化规律。

  三、抽象概括出分数的基本性质

  1、对比前面两道例题,我们发现一个规律:如果分数的分子和分母同时乘以或除以相同的数(零除外),那么分数的值不会改变。这说明分数的大小只与分子和分母的比例有关,与具体数值无关。

  2、为什么要“零除外”?

  3、教师小结:这就是今天这节课我们学习的内容:“分数的基本性质”(板书:“基本性质”)

  4、谁再说一遍什么叫分数的基本性质?教师板书字母公式:

  四、应用分数基本性质解决实际问题

  1、分数的基本性质和我们以前学过的除法中商不变的`性质非常相似。在分数中,分子和分母的比例关系是固定的,无论分数怎么化简或扩大,这个比例关系始终保持不变。这和除法中商不变的性质类似,无论被除数和除数怎么变化,商始终保持不变。这些性质都体现了数学中的一种稳定性和规律性。

  (1)商不变的性质是什么?(除法中,被除数和除数都乘上或都除以相同的数(零除外),商的大小不变。)

  (2)分数的基本性质是我们学习分数的重要内容,通过掌握这些性质,可以更深入地理解分数,并且能够灵活运用这些性质解决各种与分数相关的问题。比如,我们可以利用分数的性质进行除法简便运算,解决小数除法的问题。另外,我们还可以通过分数的性质将一个分数化成分母为12且大小不变的分数,这样可以更方便地进行计算。

  板书:

  教师提问:

  (1)?为什么?依据什么道理?(,因为分母2乘上6等于12,要使分数的大小不变,分子1也要乘上6、所以,)

  (2)这个“6”是怎么想出来的?(这样想:2×?=12,2ד6”=12,也可以看12是2的几倍:12÷2=6,那么分子1也扩大6倍)

  (3)?为什么?依据的什么道理?(,因为分母24除以2等于12,要使分数的大小不变,分子10也得除以2,所以,)

  (4)这个“2”是怎么想出来的?(这样想:24÷?=12,24÷“2”=12、也可以想24是12的2倍,那么分子10也应是新分子的2倍,所以新的分子应是10÷2=5)

  五。课堂练习

  1、把下面各分数化成分母是60,而大小不变的分数。

  2、把下面的分数化成分子是1,而大小不变的分数。

  3、在里填上适当的数。

  4、的分子增加2,要使分数 的大小不变,分母应该增加几?你是怎样想的?

  5、请同学们想出与相等的分数。规律:这个分数的值是,然后只要按自然数的顺序说出分子是1、2、3、4、……分母是分子的4倍为:4、8、12、16……无数个。

  六、课堂总结

  今天我们学习了分数的基本性质以及分数的四则运算。通过学习,我们明白了分数是用来表示一个整体被等分成若干份的数,分子表示被分的部分,分母表示总共被分成的份数。在进行分数的加减乘除运算时,我们需要根据分数的基本性质,如同分母相同可以直接加减,分子乘分子、分母乘分母等规则进行计算。这是学习分数四则运算的基础,需要认真掌握。

  七、课后作业

  1、指出下面每组中的两个分数是相等的还是不相等的。

  2、在下面的括号里填上适当的数。

《比的基本性质》说课稿8

尊敬的各位领导,各位老师:

  大家上午好,我是来自xx小学的教师。我说课的题目是比例的意义和基本性质,下面我给大家汇报一下我的基本设想:我从教材、教法学法、教学流程,板书设计、学习评价五个方面来说。

  一、说教材我说课的内容是:

  1、说课内容:人教版义务教育课程标准实验教科书六年级下册第三单元第一课时《比例的意义和基本性质》。

  2、教材的地位和作用:这部分内容是在学生学过比的知识的基础上进行教学的,是前面“比的知识”的深化,是后面学习解比例知识的基础。它起着承前启后的作用,是进行正、反比例教学的关键,是利用比例知识解决实际问题的先决条件。

  3、教学目标的确定:通过以上分析,我以《新课程标准》为依据,结合小学数学教材编排的意图,确立以下教学目标:[知识与能力.]:理解比例的意义和基本性质,掌握判定两个比是否能组成比例的一般方法。[过程与方法]:1、通过与已学知识的联系运用,学生的已有知识得以延伸。

  2、通过教学引导,培养学生发现规律、运用规律的能力。

  [情感、态度与价值观]:

  1、在教学中采用引导学生的教学方式,培养学生探究式的学习态度。

  2、通过游戏锻炼学生思维反应能力,并培养其合作精神。

  3、通过分组竞技的方式,增强学生集体荣誉感。

  4、教学重点、难点根据教学目标我将本课的重难点定为:重点:使学生理解比例的意义和基本性质。学会用两种方法判断两个比能否组成比例。难点:应用比例的意义和基本性质判断两个比能否成比例,并能正确的组成比例5、教学准备:为了教学信息的直观呈现,我选择了多媒体课件。

  二、说教法与学法

  通过前面的学习,学生已经掌握了比的知识,初步形成了一定的观察、探索、归纳的能力。因此,我采用了“自主探究”“阅读自学”

  的教学模式,教学中贯彻自主性原则,重视学生学习和探索过程,注重学生的情感体验;组织、指导学生的探究活动,允许学生对所学知识有不同的理解和体验,培养了学生主动探索知识和概括知识的'能力。

  在合理选择教法的同时,我还会重视对学生学法的指导,使学生不仅学会还要会学。在本节课的教学中我容计算—观察、比较—概括—应用等学习方法为一体,注重对学生自主探究学习能力的培养。

  三、教学程序设计

  根据以上对教材的分析,以及教法、学法的选择,我将本课的教学设计为五个环节。

  【整体设计】

  1、复习旧知导入新课

  2、通过实例探究新知

  3、实践应用、巩固新知

  4、课堂小结、回归目标5、拓展延伸发展能力

  【环节设计】

  (一)、复习旧知,导入新课

  为了新课程更好的导入,教学前,首先复习比的知识,如什么是比?什么是比值?怎样化简比?为以下情境作铺垫。

  (1)我们知道了比的前项和后项相除的商叫做比值,你们会求比值吗?打开课本看图,让学生说一说图中的内容,找一找图中共有的东西,接着让学生写出它们的比,在这我会提示比可用两种方式表示,比的形式和分数形式。

  (2)学生已经写出了四个比,选取其中两个比,如2.4:1.6和60:40让学生求出它们的比值。设问题情境你发现了什么?让学生主动的去思考,自由回答。

  (3)顺势导入,我们已经认识了比,也知道怎样求比值。今天就根据比和比值来学习比例,并且认识比例的基本性质。(板书课题:比例的意义和基本性质)

  (二)、通过实例、探究新知

  这一环节我分为三部分教学:第一部分,教学比例的意义;第二部分.教学比例的各部分名称;第三部分,教学比例的基本性质。

  第一部分:观察这两组比的比值有什么关系?学生可以自由回答,通过学生的观察与比较,学生会发现它们的比值相等,我会引导学生可以用等号连起来,然后直接给出定义这样的式子就叫做比例。然后请学生自由总结比例的意义。之后我总结归纳表示两个比相等的式子叫做比例。

  接下来设计了练习

  下列两个比之间的哪些能填“=”,为什么?

  1:2()3:6,0.5:0.2()5:2,1.5:3()15:3通过这个练习主要目的是让学生根据比例的意义先试着从具体判断两个比是否相等入手,从而引导其归纳出比例判定的一般方法,想让学生主动去探究组成比例的关键所在,这样可以培养学生自主学习,主动思考的能力。

  前面我们已经学习了比和比例的意义,那么“比”和“比例”有什么区别?这时指名学生回答,引导学生从意义上,项数上进行对比。最后,我会归纳:比是表示两个数相除,有两项;比例是一个等式,表示两个比相等,有四项。

  第二部分:教学比例的各部分名称

  这部分的教学,我采用了阅读自学法。实施素质教育,使学生由“学会”变“会学”,这里我注重培养学生的自学能力,师生的双边关系实现从扶到放的转变。在学生自学课本时,老师写出比例的两种形式,引导学生注意内项和外项的位置。(板书80∶2=200∶5,80/2=200/5)

  第三部分:教学比例的基本性质

  观察80:2=200:5中的两个内项的积与两个外项的积的关系,引导学生把两个外项与两个内项分别相乘,比较结果。两个内项的积与两个外项的积有什么关系?再让学生归纳出比例的基本性质,我做总结。探讨写分数形式,学生能够得出以下结果。我归纳“交叉相乘”积相等。

  小结:我提问比例的基本性质可以检验组成的比例对不对?学生会回答对。我及时提问那么:4:9=5:10成立吗?学生会可能会运用比例的基本性质或比值相等的不同方法去回答。

  比例的基本性质是本课的'第二个重点。为了突出重点,我引导学生计算几个比例式的内项积和外项积,实现从特殊到一般的推理方式,引导学生发现规律,概括性质。同时也渗透了实践第一的观点。

  (三)、实践应用、巩固新知

  在这我安排了三道题,第1题是对基本概念的巩固,第2题是根据比例的基本性质写出比例,第3题是用四个数组比例,这题学生在组的过程中没有方法和顺序,那么我会在交流过程中适当引导学生发现方法,总结规律,使学生不仅把题做对,而且能够更好的解决问题。

  (四)、课堂小结,回归目标

  这一环节我利用提问的方式,让学生小组总结,并派代表发言,之后小组互相评价,看哪个小组表现的最好,我予以鼓励。

  (1)这堂课我们学习了什么?(2)什么叫比例?它的各部分名称是什么?(3)比例的基本性质是什么?(4)布置作业36页2、3题。主要目的是让学生巩固理解比例的意义和基本性质并能灵活应用。

  (五)、拓展延伸、发展能力

  (1)猜数游戏16:4=8:()(2)发展性练习

  a.能否把3×40=8×15改成比例?b.如果5a=3b,那么a:b=():()从小学生心理角度考虑,学生持续听课较长时间后,他们的注意力由集中到分散,因此我设计了猜数游戏,这样既培养了学生的学习兴趣,集中了注意力,又让学生初步知道比例的基本性质的作用,为下一节课学习解比例做一些渗透,后面两道题训练了学生的发散性思维和逆向思维,开发了学生的智力。

  四、说板书设计

  结合学生的认知水平,我将本节课的板书设计的很简洁,这样既突出了重点,又给学生留下了深刻的印象。

  五、说学习评价

  在本节课的教学中我采用了师评、互评相结合的评价方式,我注重对学生的自学能力,语言表达能力以及学习热情能力的评价,我想以此来发挥评价的激励作用。

  这是我在一次远程教育教训会上的说课稿,希望各位同仁能给予我意见和建议。专家给我的点评让我很不解,我到现在也不太清楚三维目标到底应该怎样定才是正确的,才是全乎情理的。请多多指教

《比的基本性质》说课稿9

  各位老师:

  大家好!我今天说课的题目是《比的基本性质》。

  一、教材结构与内容简析

  本章是九年义务教育数学六年级第一册第三章比和比例,之前已经学习了分数,通过本章的继续探讨将为今后学习正比例函数和反比例函数等打下必要的基础。我讲的是第三章第二节比的基本性质,这一节分两课时,我主要说的是第一课。这一课是在学生已经掌握了比的意义,比和分数、比和除法的关系以及分数的基本性质和除法的商不变性质的基础上进行教学的,因此在比和比例这章中起承上启下的作用。

  二、教学目标:

  根据本节课知识在教材中的地位和作用以及学生的认识发展规律,我确定了本节课的教学目标:

  知识与能力:

  1、让学生经历发现、总结比的基本性质的过程,在感受和理解比的基本性质的发生和发展的过程中培养学生的创新精神;

  2、使学生在小组探究中掌握运用比的基本性质把一个比化成最简单的整数比的方法,培养学生解决简单实际问题的能力;

  3、尊重学生的个性,注重算法多样化,使学生在交流、争论中培养学生的独立思考能力和创造能力。

  过程与方法:

  1、经历比的基本性质的探索过程,引导学生初步认识从“特殊”到“一般”的规律,将未知转化为已知,合理运用归纳思想、整体思想,发展学生的逆向思维,渗透探索问题的思想与方法;

  2、在形成猜想与作出决策的过程中,形成解决问题的一些基本策略,发展实践能力。

  情感态度与价值观:

  1、本节课突出学生的主体地位,让学生高高兴兴地进入数学世界,在探索中激发兴趣,从发现中寻找快乐;

  2、培养学生做事、待人应具体问题具体分析的良好习惯;

  3、由旧知识引入新知识,培养学生应用数学的意识,并激发学生学习数学的兴趣;

  4、通过由旧到新、由新到旧的训练发展学生主动探索,合作交流的意识。

  三、教学重点、难点:

  重点:比的基本性质及运用比的基本性质进行化简,通过同学们自主探究,突出重点;

  难点:运用比的基本性质计算,通过师生交流互动突破难点。

  四、教法与学法:

  教法:在以师生既为主体,又为客体的原则下,展现获取知识和方法的思维过程。基于本节课的特点:有分数的基本性质作为基础,我采用自主探究,合作交流的教学方法。

  学法:从猜想——合作交流验证——发现,即在教学过程中创设教学情景,注重教师的导向作用和学生的主体作用。

  五、教学过程与设计意图:

  1.创设生活情境,以激发学生的探索欲望

  上课开始,我询问学生:“同学们喜欢喝菓珍吗?”大部分同学会说愿意并会表示他们愿意喝更甜一些的。这时我会适时的向学生说明其实小明同学和大家一样也喜欢喝甜的菓珍,这不小明的妈妈给小明准备了三杯菓珍,但只能选择其中的一杯,哪杯甜呢?这下难坏了小明,聪明的同学们,你们愿意帮助他吗?多媒体课件演示:第一杯100毫升的水,10克菓珍;第二杯200毫升的水,20克菓珍;第三杯400毫升的水,40克菓珍.同时我也以此在讲台上做了这个实验,同学们会兴致盎然,想尽各种办法帮助小明。

  (这样的设计意图是因为每一个学生都是热情的,都是乐于助人的,尤其是愿意帮助同学解决问题,因此一听说帮助同学,学生会产生极大的兴趣,兴趣就是学生思维的原动力,只要有兴趣,就会产生创造性的源泉。另外小明的困难又是学生熟悉的生活情境,这有利于学生凭借生活经验主动探索,实现生活经验数学化,同时又感受到“数学源于生活”。)

  2.引导学生发现规律,总结比的基本性质

  同学们帮助小明解决问题,有的利用商不变性质,有的利用分数的基本性质。学生在师生互动中说出商不变性质,分数的基本性质的内容。屏幕出示文字内容。我接着询问在分数的基本性质里,有哪些关键词?在商不变的性质里,有哪些关键词?缺少他们行吗?为什么?通过类比让学生想到比的基本性质,从而引出课题。

  (这样的设计意图是先通过学生回忆已学旧知,进而猜想比的基本性质从而引出课题,放飞了学生思维,让他们自主地依据已有知识经验,在观察、合作、猜想、交流中展开合理的想象与多角度思考。)

  接下来,让学生观察商不变性质与分数的基本性质,猜一猜,想一想,比的基本性质应该是怎样的呢?小组讨论,学生根据讨论结果发表意见,师生共同总结比的基本性质的内容。最后强调学习了比的基本性质,哪些词语是很重要,提醒同学们注意“同时、相同、0除外”这些关键词。

  (这样的设计意图是让学生体会到充分利用已有知识自学新知的学习方法,进一步弄清了比、除法、分数之间的联系与区别。然后通过引导学生用语言描述,共同完善比的基本性质,使学生在这一过程中,领悟了利用旧知学习新知的学习方法,沟通了知识间的联系,又培养了学生初步的类比推理能力。)

  3.理解最简整数比

  通过类比让学生明白利用商不变性质,我们可以进行除法的简算;根据分数的基本性质,我们可以把分数约分成最简分数。同样应用比的基本性质,可以把比化成最简单的整数比。小组讨论怎么理解“最简单的`整数比”这个概念?然后达成共识:(1)是一个比;(2)前项、后项必须是整数,不能是分数或小数;(3)前项与后项互素。

  (这样的设计意图是“最简单的整数比”是本节课教学的难点,所以先类比然后让学生讨论最后对这个概念产生共识的方法,让学生在独立思考、互动交流中自发地尝试利用已有的知识来解读新概念。)

  4.教学例题,加深对知识的理解

  例1 化简下列各比:

  (1)(2) 0.65:1.3 (3) :(4)1.25升:375毫升

  化简之后让学生小结(1)分数的化简,用约分方法就可以;

  (2)两个小数的比,通常先化成整数,再化简;

  (3)带分数与分数的比,先将带分数化成假分数,然后再化简;

  (4)两个同类量的比,单位不统一时,先化单位一致,再化简。

  (这样的设计意图是试图通过对较简单的整数比的化简,给学生一个运用性质解决具体问题的范例,让每个学生充分展示自己的思维方法及过程,相互讨论分析,提示知识规律和解决问题的方法,在合作中学生互相帮助,实现学生互补,增强合作意识,提高交往能力。)

  5.实践练习,巩固知识

  练习1 小蜗牛找家(口答)

  六个家分别是6:30, 0.1:0.4, 2:6, 2:8, :1, 16:20

  五个蜗牛分别是4:5, 1:3, 1:4, 1:5, 2:3找到后连接起来。

  (这样的设计意图是使原来枯燥乏味的数学题有了“趣味性”,使学生对数学产生浓厚的兴趣和亲切感,从而调动课堂气氛。)

  练习2 填空

  1、3:8=(3×2):(8×□)

  2、15:10=(15÷□):(10÷5)

  3、5:3=(5×□):(3×□)

  (这一部分的设计意图是使学生加深对比的基本性质的理解,尤其是最后一题使学生在填空过程中体会到可以填“除0以外的所有相同的数”,培养学生的开放性思维。)

  练习3判断下列各题

  (1) 16 ︰4的最简比是4。 ( )

  (2) 5︰2.5 的比值是2。 ( )

  (3) 6 ︰0.3 的最简比是20 ︰1。 ( )

  (4)比的前项和后项都乘或都除以相同的数,比值不变。 ( )

  (这一部分的设计意图是题目的多样性使学生更加深刻的理解比的基本性质的概念。)

  练习4化简下列各比

  (1)48:64 ; (2)4.6:6.9 ; (3)220cm:1.1m ; (4)1.5升:720毫升

  (这一部分的设计意图是进一步巩固知识,使学生清楚化简比它是为了得到一个最简单的整数比,结果可以写成比的形式,也可以写成分数的形式,但不能写成带分数、小数或整数的形式。求比值是为了得到一个数,结果可以写成分数、小数,也可以是整数。)

  拓展练习:

  为迎世博完成一批纪念品制作,甲单独作20天完成,乙单独作30天完成。

  (1)写出甲、乙完成这批纪念品制作所用的时间比,并化简。

  (2)写出甲、乙完成这批纪念品制作的工作效率比,并化简。

  (这一部分的设计意图是让学生从实际出发,根据解决问题的条件作全面分析,周密思考,提高了学生全面分析及解决实际问题的能力,目的是培养学生辩证地看问题,培养学生创新精神。)

  6.课堂小结,回顾所学知识

  比的基本性质,是同学们通过自己主动探索,合作研究发现的,并能根据这一性质解决实际问题,回顾我们的学习过程,谁来谈谈你的收获和感受。

  (这一部分是对学生学习的一种激励评价,使学生体验到主动探索,获取知识的喜悦,激发了学习兴趣,树立学习自信心。)

  以上就是我对本节课的教学设计,如有不当之处敬请各们老师批评指正。

《比的基本性质》说课稿10

  一、教材分析

  分数的基本性质包括约分和通分,这是进行分数运算的基础。约分和通分是分数运算的重要前提,只有保持分数的最简形式才能确保计算的准确性。此外,分数与除法的关系密切,除法中的商不变规律也是分数运算中的重要规则。理解分数的基本性质对于学习和掌握分数运算至关重要,是建立在坚实基础之上的。

  探索分数的基本性质,关键是让学生在活动中主动地观察和发现,在讨论交流的基础上归纳规律。根据我对教材的认识,本课时安排了学习活动和游戏活动让学生寻找相等的分数,使学生初步体验分数的大小相等关系,为观察、发现分数的基本性质提供丰富的学习材料。然后引导学生观察这两组相等的分数,寻找分子、分母的变化规律,并展开充分的交流讨论,在此基础上归纳分数的基本性质。

  教学目标:

  1、掌握分数的基本性质是非常重要的,通过探索和理解分数的基本性质,我们能更好地理解和运用分数。比如,我们可以通过分数的基本性质,将一个分数化成指定分母(或分子)而保持分数的大小不变。这样我们就能更灵活地处理分数,进行计算和比较。

  2、能力目标:培养学生的观察、比较、归纳、总结概括能力。

  3、情感目标:经历观察、操作和讨论等学习活动,体验数学学习的乐趣。

  二、说教法

  在营造学生独立、自主学习空间的过程中,我将积极倡导“将课堂还给学生,让课堂焕发生命活力”的理念。在教学活动中,学生将成为课堂的主人,拥有主导学习的权力。为了实现这一目标,我将结合概念教学的特点以及学生的认知规律,采用相应的教学方法。

  1、直观演示法

  当学生通过实际操作感受到分数的基本性质后,可以通过比较和归纳来深入理解。通过比较不同分数的大小、大小关系以及运算规则,可以逐渐总结出分数的基本性质。最终,学生可以从具体的例子中概括出分数的基本性质,使他们的思维逐渐从形象思维向抽象思维过渡。

  2、实际操作法

  在教学中,可以通过让学生亲自动手、折纸、画图、比较大小等实践活动,来加深他们对分数基本性质的理解。通过这些实际操作,可以促使学生逐步将感性认识转化为理性认识,从而更加深入地理解分数的概念和运用。

  3、启发式教学法

  运用知识迁移规律组织教学,层层深入促使学生在积极的思维

  4、树立以“以学生发展为本”、“以学定教”、“教为学服务”的思想,因此在教学中,我采用引导自学、合作探索相结合法,让学会运用分数的基本性质把一个分数化成分母不同但大小相等的分数,有效地提高了教学效率。在知识的`巩固阶段,我还采用分层练习法,当然以上这些教法并不是孤立存在的,本着“一法为主,多法为辅”的思想,我将多种教法进行优化组合,以达到促进学生学习方式的转变,实现教学目标的目的

  三、教学组织形式:

  师生互动、合作与探索结合

  四、教学过程与设计意图

  1、故事引入、激发兴趣、揭示课题

  以阿凡提讲故事引入,然后小组讨论。

  2、动手操作,探索新知

  ①做一做,拿出三张同样大小的长方形纸,请分别平均折成2份、4份、8份,并按照下图所示进行涂色。如果将每张纸都看作“1”,请用分数表示涂色的部分。学生们可以动手操作,完成后进行汇报。

  根据上面的过程,学生能得到一组相等的分数吗?

  ②学生可以根据这三个分数的分子和分母的变化规律总结出:分数的分子和分母同时按照相同的规律变化。当分数的分子和分母同时乘以或除以相同的数(0除外)时,分数的大小不变,这是分数的基本性质之一。

  知识引伸,联系旧知识:根据分数与除法的关系,以及整数除法中商不变的性质,你能说说它与分数的基本性质吗?

  设计意图:在学习中,我们希望通过让学生主动探索和逐步获取新知识,激发他们的学习兴趣。在这个活动中,我们将利用直观图形组织一个动手操作的环节,帮助学生找出相等的分数。通过这个活动,学生可以直观地感受到分数的大小关系,培养他们的操作能力和语言表达能力。同时,我们鼓励学生团结协作,互相帮助,共同取得成功,每个人在这个过程中都能得到进步。让我们一起动手,一起思考,一起成长!

  这次活动安排了丰富的学习材料,帮助学生联系以往的学习经验,进行知识迁移,探索分数大小的变化规律。老师在这个过程中进行了重点引导,帮助学生观察、比较、归纳和概括能力的培养。

  3、实践游戏、深化理解、巩固练习:

  设计意图:学生们在学习中,逐渐由简单到复杂,由浅入深,既巩固了新知识,又培养了思维能力,同时也在潜移默化中接受思想品德教育。老师和学生一起做题,营造出民主和谐的学习氛围。学生们在课堂游戏中都非常积极参与,老师应该及时表扬那些表现出色的学生,同时也要关心一些学习较慢的同学,带动他们的学习热情。

  4、全课总结:这节课你有什么收获?

《比的基本性质》说课稿11

尊敬的各位评委,各位老师:

  大家好!我说课的内容是《分数的基本性质》。这课选自北师大版小学数学五年级上册第三单元的学习内容,这部内容的学习是在学生学习了分数的意义、分数与除法的关系、商不变性质等知识的基础上进行教学的。它是进一步学习约分、通分的基础。

  根据本单元的教学要求和本课的特点,我设计本课的教学目标有三点:

  1、(认知目标)理解分数的基本性质,并了解它与除法中商不变的规律之间的联系。

  2、(认知目标)理解和掌握分数的基本性质。

  3、(能力、情感目标)培养学生观察、分析、推理的能力。

教学重点:理解和掌握分数的基本性质。

  教学难点:让学生自主探索,发现和归纳分数的基本性质,以及应用它解决相关的问题。

  《数学课程标准》提出:把现代信息技术作为学生学习数学和解决问题的强有力工具,致力于改变学生的学习方式,使学生乐意并有更多的精力投入到现实的、探索性的数学活动中去。如何充分发挥、凸显现代信息技术的优越性和有效性而又省时省力呢?

  本课依托网络平台,为学生创设一种大问题背景下的探索活动,以游戏这个学生感兴趣的明线下,借助网络实验室,使学生在一种动态的探索过程中自己发现分数的基本性质,从而体验发现真理的曲折和快乐,感受数学的思想方法,体会数学的科学性。创设“猜想——验证——反思”的教学模式,以“猜想”贯穿全课,引导学生大胆猜想——验证猜想——完善猜想等,从而一步步使分数的基本性质趋于完善。

  我设计的具体教学过程如下:

  第一环节:激趣引入,凸显信息技术的趣味性。

  “成功的一半取决于良好的开始”,本课采用了学生感兴趣的电脑游戏和卡通人物作为引子,巧妙地唤起了学生的好奇心和求知欲。在比较三个分数大小的过程中,学生们各抒己见,坚持自己的观点不动摇,形成了不同观点的矛盾冲突,激发了学生们的思考和探究欲望。这种矛盾的存在为后续的规律发现打下了基础。

  第二环节:探索规律,凸显信息技术的直观性和时效性。

  1、提出猜想。

  学生打开了一个国外网站,看到了一个有趣的情境:三个分数的涂色部分是相等的。通过操作,他发现这三个分数的大小是一样的。

  再引导学生观察这组分数中“什么变了,什么没变”,从变了的分母、分子入手去观察它们是怎么变的,得到初步的猜想,“分数的分子、分母都乘或除以2,分数的大小不变”。

  2、完善猜想。

  在进行数学探索时,小明和小红研究了一个有趣的问题:三分之二和十五分之十这两个分数是否相等。经过仔细思考,他们初步猜测这两个分数可能是相等的。为了验证猜想,他们决定进入网络实验室进行计算。经过计算验证,他们惊喜地发现,三分之二和十五分之十的确是相等的。这个发现让他们对数学充满了好奇和探索的乐趣。

  这一部分的主要目的是让学生进一步感受到分数的特点,即分数的分子和分母可以同时乘以或除以同一个数,而分数的大小不会改变。通过观察和实践,学生可以发现分数的分子和分母乘以或除以较大的数,分数的大小仍然保持不变,从而引发他们对“分数的分子、分母都乘或除以同一个数,分数的大小不变”这一猜想的进一步思考和探索。

  网络实验室再次展现了其快速、直观的评分功能,这次使用了纸条作为表现形式。纸条上的数字大小直接反映了分数的高低,让人一目了然。这种直观的方式让人更容易理解和接受评分结果。

  3、验证猜想,得出规律。

  学生将符合猜想的三组分数记录在学习卡上,并在网络实验室进行验证。经过验证,这些分数确实展现出一定的规律。通过大量的例子,我们发现这并不仅仅是学生的猜想,而是真实存在的一种规律。

  最后运用分数与除法的关系和商不变的性质,从旧知迁移解释、理解新知,得到“同一个数”不能为0,从而确定了最后规律,得到本课课题:分数的基本性质。(平时的教学中能验证的分数少之又少,而学生通过猜想可以得到的分子、分母较大的相同大小的分数——如二分之一和百分之五十这样的分数就很难验证,通过我们的网络实验室就能很好地解决这个问题,充分体现了网络实验室的重要性和必要性。这样,在平常教学中最花费时间的环节——验证上节省了不少时间)

  第三环节:游戏巩固,思维提升,凸显信息技术的交互性。

  学生已经理解了分数的基本性质后,再次进入网络实验室,以玩游戏的形式巩固所学的.规律。(教师也从这个过程了解学生的掌握情况。有的学生在玩这个游戏的时候甚至发现了两个分数之间的分子、分母分别不具备倍数关系,如十二分之六和十八分之九,还发现通过找中间数也能运用分数的基本性质解释这个现象。)

  在回到第一组分数的基础上,我们可以利用分数的基本性质来写出与第一组分数相等的分数。这样做可以帮助学生提升思维,初步感知到与第一组分数相等的分数有无限多个。通过这种方式,让学生意识到分数的基本性质在数学中的广泛应用,同时也激发了他们进一步学习和探索的欲望。

  第四环节:提炼方法,积累基本的数学活动经验。

  学生与老师一起回顾学习过程,总结并提炼出探索规律的方法:提出猜想→进行验证→得出结论,为学生今后的学习提供科学的学习方法。

  第五环节:网上交流,课内向课外延伸。

  一节课的结束不仅仅是解决了几个问题,更重要的引发学生新的思考和新的探究行为,但一节课的时间是非常有限的。所以在课的最后,教师在课件上给学生提供了课堂上所用网络实验室的网址和老师的博客,让学生通过网络实验室这个平台及博客这个载体,在网络上回馈所学、发表言论。记得我公布博客地址不久就得到了学生的反馈,甚至听课老师也参与其中,给我提出许多的意见和建议。这样能让学生感受了网络资源丰富的同时,也使这节课不仅仅局限在课堂上,还拓宽到了网络以及今后的生活、学习中,真真正正的利用、发扬网络资源,把一些常规课堂无法实现的交流,都一一实现,体现了信息技术的人性化、学生主体性以及网络的延迟性和广泛性。

  最后我以一句话结束我今天的说课“儿童是知识的创造者而不是被动接受者,他们主动地建构属于他们自己的知识和对事物的理解。当孩子们在经历数学、体验数学时,课堂才是充满活力的!”,谢谢大家!

《比的基本性质》说课稿12

  一、说教材。

  1、教学内容:

  《比例的意义和基本性质》是浙教版数学第十二册的内容。比例的知识在工农业生产和日常生活中有广泛的应用。这部分知识是在学习了比的知识和除法、分数等得基础上教学的,是本套教材教学内容的最后一个单元。而本节课内容主要属于概念教学,是为以后解比例,讲解正、反比例做准备的。学生学好这部分知识,不仅可以初步接触函数的思想,而且可以用来解决日常生活中一些具体的问题。

  2、教学目标:

  根据新课标要求和教材的特点,结合六年级学生的实际水平,确定以下教学目标:

  (1)通过计算、观察、比较,让学生概括、理解比例的意义和比例的基本性质。

  (2)认识比例的各部分名称。

  (3)学会用比例的意义或比例的基本性质,判断两个比能不能组成比例,并写出比例。

  培养学生自主参与意识、自主探究的精神,培养学生初步的'观察、分析、比较、判断、概括的能力,发展学生的思维。

  3、教学重、难点:

  (1)教学重点:理解比例的意义和基本性质。

  (2)教学难点:应用比例的意义和基本性质判断两个比能不能组成比例,并写出比例。

  二、说教学设计。

  课堂教学是学生学习数学知识的获得,能力发展的重要途径。基于此,我设计了如下的教学设计。

  (一)复习导入。

  先复习比的一些知识,什么叫比?什么叫比值?然后出示四个比让学求比值。揭示课题。

  (二)教学新课。

  分成两部分:第一部分,教学比例的意义;第二部分,教学比例的基本性质。

  第一部分:先出示例1,让学生写出比,再计算它们的比值,然后观察、比较,发现比值相等,问:“那他们之间可以用什么符号连接呢?”是让学生深刻地了解到,只要两个比的比值相等,就可以说两个比相等。运用黑板上的几个比例式,告诉学生象这样的式子就叫做比例,给学生直观的印象。教学比例的意义后,及时组织练习。第一个是判断导入部分的四个比能否组成比例,并说明理由。第二个练习是,判断两个比是否能组成比例,在这个过程中,不仅运用了比例的意义,而且对比的性质也有一定的运用,以培养学生从多种角度解决问题的能力。第三个练习是写出比值是0。4的两个比,并组成比例。三个练习,每一个都在逐步的延伸,意在达到熟练运用比例的意义解决问题的能力。

  第二部分:在认识比例的各部分名称时,从比较比和比例有什么区别引出比例各部分的名称。

  在揭示比例的基本性质时,我先让学生计算,然后观察发现规律,进一步验证规律,最后概括出比例的基本性质。接着就做些练习对所学的知识进行巩固及应用。特别强调了已知两个外项的积等于两个内项的积,利用这个式子改写成比例。

《比的基本性质》说课稿13

  一、教材分析

  1、教材内容

  学习《分数的基本性质》这一课时,我们已经掌握了分数的概念和基本运算规则,理解了分数与除法的关系以及商的不变性质等知识。在这节课上,我们将学习分数的基本性质,即分数的分子和分母发生变化时,分数的大小会如何变化。通过学习这些规律性知识,我们将能够更好地理解分数的运算规则,从而提高我们的数学能力。

  2、知识间的联系:

  七册:商不变性质 十册:分数的基本性质 十二册:比的基本性质

  同时《分数的基本性质》也是学生学习分数加减法的基础。所以,本节课的教学内容具有比较重要的地位。

  二、指导思想与设计理念

  教师应该给予学生充分的机会参与数学活动,帮助他们通过自主探索和合作交流真正理解和掌握基本的数学知识与技能、数学思想和方法。

  根据这一新的理念,我认为教师可以设计一系列探索活动,让学生在探索过程中自己发现分数的基本性质。通过这种动态的学习方式,学生能够体验到发现真理的乐趣,感受数学的思维方法,培养科学的学习方法。因此,教师在教学中应注重培养学生的思维和方法,而不仅仅是传授规律和应用。在这种教学理念下,本课程设计旨在让学生经历以下过程:首先是唤醒旧知识(复习商不变性质与分数与除法的关系),然后引导学生猜想新知识(是否存在分数中的类似性质,如果有,这种性质是什么?),接着通过实践探究(观察图像进行分类)得出结论(通过研究卡片),进而加深对所得结论的理解,尝试练习,理解其中的变化和不变性,并尝试用字母表示出相应的数学表达式。通过基本题、综合题、加深题的练习,学生能够更好地掌握分数的基本性质,进而尝试用字母表示分数的基本性质,并建立分数的基本性质与商不变性质之间的联系。这样,学生能够在数学层面上更清晰、明确地理解分数的基本性质。

  三、学情分析

  前测:(问卷形式)

  问题1:你知道分数的基本性质吗?你是怎样理解的,试着举例说明。

  2:试着做一做下面这些题比较大小:

  4/7○2/7 1/2○2/4 3/5○9/15

  分析:暂无

  结论:暂无

  四、教学目标及重难点

  教学目标:

  1、让学生经历分数基本性质的探究过程,理解和掌握分数的基本性质,初步建立数学模型。

  2、利用分数的基本性质把一个分数化为指定分母(或分子)而大小不变的分数。

  3、培养学生的观察、概括等思维能力及(渗透变与不变)数学学习兴趣。

  教学重点:

  理解掌握分数的基本性质,它是约分,通分的依据

  解决策略:通过让学生经历猜想验证得出结论实践练习这样的学习过程,掌握知识的要点:什么是同时?方法是:乘或除以,要点:相同的数(0除外),最终:分数的大小不变。

  教学难点:

  理解和掌握分数的基本性质。

  解决策略:通过初步建立数学模型,让学生能够独立思考和理解分数的基本性质,而不是依赖具体事物或图例。

  五、教法学法:

  教法:树立以以学生发展为本、以学定教的思想,为实现教学目标,有效地突出重点、突破难点,我遵循学生的认知规律,以建构主义学习理论为指导,在探究分数的基本性质过程中,采取学生动手操作、小组讨论、合作探究等方式,引导学生进行比较、观察、分析,充分运用知识迁移的规律,在感知的基础上加以抽象、概括,进行归纳整理,采取迁移教学法、引导发现法组织教学。

  学法:数学学习应该是一个积极参与的过程,学生不能只是简单地模仿和记忆知识,而应该通过动手实践、自主探索和合作交流来深入学习数学。在学习中,学生可以尝试自学的方法,独立探索如何将分数化成分母不同但大小相同的分数,并尝试完成相关练习,以检验自己的学习成果。通过观察、比较、提出问题并解决问题,学生可以展开自主探索和与同学合作交流,充分发挥他们在学习中的主体作用,激发学习兴趣,同时获得成功的体验。

  六、教学过程

  一、迁移旧知.提出猜想

  1回忆旧知

  活动:分数与除法之间有着密切的关系。当我们进行除法运算时,实际上就是在计算一个数被另一个数分成几等分。这种分割的概念与分数的概念是相互联系的。例如,当我们计算 $frac{6}{2}$ 时,我们实际上是在计算6被分成2等分,每份有多少。因此,理解分数的概念有助于我们更好地理解除法运算。

  被除数除数=

  通过谁能说一道与23商一样的除法算式?引导学生回忆什么是商不变的性质?媒体出示:商不变的'性质:

  被除数和除数同时乘或除以相同的数(零除外),商不变。

  2、提出猜想:

  当我们进行分数的乘法或除法运算时,分子和分母同时乘或除以相同的数(除零外),分数的值不会改变。这就是分数的乘法和除法的不变性质。这个性质可以帮助我们简化分数运算,更方便地进行计算。

  二、验证猜想,建构新知

  环节1、看图分类

  下面是一组相等的正方形,请写出每个图形阴影部分所表示的分数,并把相同的分数分在一起。

  通过让学生亲自动手操作,让他们深刻理解两者相等的原因,为后续实验做好准备。这样不仅可以避免学生盲目跟从,还可以激发学生探究方法的多元化。

  环节2、讨论方法

  师:你是怎么判断它们相等的?

  师:它们相等,用算式可以怎么表示?

  1/2 = 2/4 = 4/8

  通过让学生表述怎么判断它们相等的锻炼学生的表达能力。

  3、研究规律

  第一层:师:这些相等的式子,除了我们从图上看到的大小相等之外,还有没有其他的秘密呢?

  利用研究卡进行研究。

  确定的研究对象

  分子和分母同时乘上或者

  除以一个相同的数

  得到的分数

  研究对象与得到的分数相等吗?

  相等( )不相等()

  猜想是否成立?

  成立( )不成立( )

  充分利用学生的生成资源:揭示课题:分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。

  第二层:教师通过追问和简单的练习重点处理分数基本性质的关键词,渗透变与不变的数学思想。

  师:为什么要0除外?

  师:对于这句话,你是怎么理解的?(让学生互相讨论,并进行说明。)

  练习:2/3=( )/18、6/21=2/( )、3/5=21/( )、27/39=( )/13

  师:这里面什么变了,什么不变?(生:分子和分母变了,但分数的大小不变)

  师:分子与分母是怎样变化的?(同时乘或除以相同的数,0除外)

  师:分数的基本性质与商不变性质有什么联系?

  环节4、质疑完善

  3/4 = 3( )/ 4( )

  师:括号中可以填哪些数?

  预设:可以填无数个数

  师:如果只用一个数来表示,填什么数好?

  预设:字母

  师:这个字母有什么特殊要求吗?(0除外)

  得到一个初级的数学模型。3/4= 3X/ 4X(X0)

  让学生打开课本进行阅读、内化,并想一想还有什么问题吗?

  通过这个环节的练习,进行第一次数学建构。

  三、练习升华

  通过以下练习,可以进一步巩固分数的基本性质,帮助学生初步掌握利用分数的基本性质将一个分数化为指定分母(或分子)而大小不变的分数。让学生通过练习,加深对分数运算规律的理解,提高他们的分数计算能力。

  1、5/7=( )/35 、3/4=9/( )、3/( )=12/20、16/24=( )/3

  2、把5/6和1/4都化为分母为12而大小不变的分数。

  3、把2/3和3/4都化为分子为6而大小不变的分数。

  4、把2/5的分子加上2以后,要使分数的大小不变,分母应加上多少?

  5、和 哪一个分数大,你能讲出判断的依据吗?

  四、总结延伸

  师:这节课学了什么?

  师:如果一个分数为A/B,你能用一个式子来表示分数的基本性质吗?

  A/B=AX/ 4X(X0)或A/B=AX/ 4X(X0)

  在建立数学模型的过程中,我们将问题抽象化,将现实生活中的情景转化为数学符号和表达式。这样做有几个好处:一方面有利于我们更好地记忆和理解问题的本质,另一方面也有助于我们用数学语言准确地描述和解决问题。因此,建立数学模型是我们学习数学的重要环节,也是培养高年级学生数学思维能力的关键之一。

  五、作业p87-1、2

  板书设计

  分数基本性质

  分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。

《比的基本性质》说课稿14

  一、说教材

  1、说课内容:

  九年义务教育课程标准实验教科书六年级下册比例的意义和基本性质, 练习六的练习题。

  2、说课内容的地位与作用:

  这部分内容是在学生学过比的知识的基础上进行教学的,是前面“比的知识”的深化,是后面学习解比例知识的基础。它起着承前启后的作用,是小学阶段学习比例初步知识的一项重要内容。分两段来进行教学:第一段教学比例的意义,通过两个比的比值相等概括比例的意义;第二段教学比例的基本性质,让学生自己去发现比例中两个外项与两个内项的积的关系。这样便于加深学生的印象,最后总结比例的基本性质。为此,教学时先复习比的基本知识,使知识间发生迁移,再在此基础上探索新知,最后深化新知,为以后学习解比例等知识打下扎实的基础。

  3、说教学目标

  《新课程标准》明确了义务教学阶段数学课程的总目标应以知识与技能、教学思考、解决问题、情感和态度四方面来阐述,使学生得到充分、自由、和谐、全面地发展。因此,以《新课程标准》为依据,结合小学数学教材编排的意图,确立以下教学目标:

  (1)知识与技能目标:使学生了解和掌握比例的意义和基本性质,认识比例各部分名称,知道比和比例的区别。

  (2)能力目标:充分发挥多媒体课件的优势,启发学生的创造性思维,培养他们探索和解决问题的能力。

  (3)情感与态度目标:激发学生的学习兴趣,引导学生自主参与知识探究全过程,培养学生初步的观察、分析、比较、判断、概括的能力,发展学生的思维。

  4、教学重、难点:

  教学重点:比例的意义与基本性质

  教学难点:运用比例的基本性质与意义判断两个比能否组成比例。

  二、说教法、学法

  1、说教法:

  通过前面的学习,学生已经掌握了比的知识,初步形成了一定的观察、探索、归纳的能力。因此,我采用了“自主探究”的教学模式,教学中贯彻自主性原则,重视学生学习和探索过程,注重学生的情感体验;组织、指导并参与学生的探究活动,允许学生对所学知识有不同的理解和体验,提高学生的科学文化素质和技能素质。

  2、说学法:

  根据学生的年龄特点,引导学生观察发现,再加上适时的自学,有意识地培养学生探索新知的能力。根据学法的自主性原则,充分发挥学生的`主观能动性;根据学法的差异性原则,对学生进行分类指导。

  三.说教学过程

  1.创设情境,导入新课:

  我采用生活实例引入课题,课件出示我们祖国各地的风景图片;我们的祖国幅员非常辽阔,却能在一张小小的地图上清晰可见各地位置; “这么辽阔的地方为什么能用一张小小的地图就能清楚的表示出来呢”引发学生的探究欲望。

  (设计意图:这样由地图生活实例引入课题,有利于学生体会所学知识的生活价值。以价值观的角度激发学生的求知欲望。)

  然后顺势导入课题并板书:这样地图片或实物按一定的比例放大或缩小,都要用到比例的有关知识。最后出示几个比,让学生求出比值,你发现了什么?

  2.自主探索,探究新知

  通过求两个比的比值,发现这两个比的比值相等,用等式表示两个比的比值相等的关系,从而概括出比例的意义,然后利用比例的意义来判断两个比能不能组成比例,并通过例1中四面国旗的尺寸中,你还能哪些比?写出两个比,根据比值相等写出比例,进一步加深对比例意义的认识。同时还请学生自己说出几个比例,在此基础上运用学生说出的比例,请学生自学比例中各部分的名称,然后教师提醒学生:前面我们已经探究发现了比例的一个秘密,比例还有一个秘密,你们分成小组来找找看,并用简洁语言归纳出来。

  (设计意图:这样引导学生通过自己的努力去发现比例的基本性质,整个环节力求体现学生自主探索、独立思考、合作交流的学习过程,从而提高学生的自学学习能力。)

  3.讨论巩固、形成技能

  (1)基本训练

  (2)发展性练习

  4.全课小结:这节课你学到了哪些知识?运用了哪些学习新知?还有什么疑问?

《比的基本性质》说课稿15

尊敬的评委、老师们:

  大家好!

  我今天说课的内容是:苏教版小学数学六年级下册第三单元例4《比例的基本性质》,下面我将从教材、教法、学法、教学过程、板书设计几个方面进行分析。

  一、教材

  本节教材是在初步理解了比的意义和性质、比例意义的基础上进行教学的,同时又是后面解比例的基础。根据以上分析,我把本课教学目标设计为:

  (1)知识和技能目标:使学生认识比例的各部分名称,理解并掌握比例的基本性质。

  (2)过程和方法目标:使学生主动经历自主探索、合作交流的过程,通过观察、分析、推理等思维活动来探究比例的基本性质;培养学生的归纳、概括和探究能力。

  (3)情感和价值观目标:使学生在探索比例的基本性质的过程中,进一步体会不同领域数学内容知识之间的联系。

  由此,我确定本节的'教学重难点是理解并掌握比例的基本性质。

  教具准备:多媒体

  二、教法、学法

  “教师是学生学习的组织者、引导者、合作者”根据这一理念,我遵循了“激—导—探—放”的原则,引导学生利于已有的知识基础,采用观察分析、猜测验证、运用迁移等教学方法组织教学。

  自主探索与合作交流是学生学习数学的重要方式。因此我引导学生通过操作、观察、思考等方式促使学生多种感官参加,激发学生兴趣。

  三、教学过程

  立足于学生的学及本节课的教学目标,我将教学过程设计为四个环节:

  (一)复习旧知,导入新课。

  (二)自主探究、合作交流。

  (三)巩固练习,拓展应用。

  (四)总结反思,提升认识。

【《比的基本性质》说课稿】相关文章:

比的基本性质说课稿11-05

《比的基本性质》说课稿06-25

《比的基本性质》说课稿11-07

等式的基本性质说课稿07-08

分数基本性质说课稿02-09

分数的基本性质(说课稿)10-27

分式的基本性质说课稿12-12

《分数的基本性质》的说课稿06-25

《分数的基本性质》说课稿07-04

《比例的基本性质》说课稿11-21

Copyright©2003-2024gushici.weiyujianbao.cn版权所有