比的基本性质说课稿
作为一名人民教师,可能需要进行说课稿编写工作,借助说课稿我们可以快速提升自己的教学能力。那么大家知道正规的说课稿是怎么写的吗?下面是小编为大家整理的比的基本性质说课稿,欢迎阅读,希望大家能够喜欢。
比的基本性质说课稿1
各位老师:
大家好!我叫***,来自**。我说课的题目是《概率的基本性质》,内容选自于高中教材新课程人教A版必修3第三章第一节,课时安排为三个课时,本节课内容为第三课时。下面我将从教材分析、教学目标分析、教法分析、教学过程分析四大方面来阐述我对这节课的分析和设计:
一、教材分析
1、教材所处的地位和作用
本节课主要包含了两部分内容:一是事件的关系与运算,二是概率的基本性质,多以基本概念和性质为主。它是本册第二章统计的延伸,又是后面"古典概型"及"几何概型"的基础。在整个教学中起到承上启下的作用。同时也是新课改以来考查的热点之一。
2、教学的重点和难点
重点:概率的加法公式及其应用;事件的关系与运算。
难点:互斥事件与对立事件的区别与联系
二、教学目标分析
1.知识与技能目标
⑴了解随机事件间的基本关系与运算;
⑵掌握概率的几个基本性质,并会用其解决简单的概率问题。
2、过程与方法:
⑴通过观察、类比、归纳培养学生运用数学知识的综合能力;
⑵通过学生自主探究,合作探究培养学生的动手探索的能力。
3、情感态度与价值观:
通过数学活动,了解教学与实际生活的密切联系,感受数学知识应用于现实世界的具体情境,从而激发学习数学的情趣。
三、教法分析
采用实验观察、质疑启发、类比联想、探究归纳的教学方法。
四、教学过程分析
1、创设情境,引入新课
在掷骰子的试验中,我们可以定义许多事件,如:
c1=﹛出现的点数=1﹜,c2=﹛出现的点数=2﹜
c3=﹛出现的点数=3﹜,c4=﹛出现的点数=4﹜
c5=﹛出现的点数=5﹜,c6=﹛出现的点数=6﹜
D1=﹛出现的点数不大于1﹜D2=﹛出现的点数大于3﹜
D3=﹛出现的'点数小于5﹜,E=﹛出现的点数小于7﹜
f=﹛出现的点数大于6﹜,G=﹛出现的点数为偶数﹜
H=﹛出现的点数为奇数﹜
⑴以引入例中的事件c1和事件H,事件c1和事件D1为例讲授事件之的包含关系和相等关系。
⑵从以上两个关系学生不难发现事件间的关系与集合间的关系相类似。进而引导学生思考,是否可以把事件和集合对应起来。
「设计意图」引出我们接下来要学习的主要内容:事件之间的关系与运算
2、探究新知
㈠事件的关系与运算
⑴经过上面的思考,我们得出:
试验的可能结果的全体←→全集
↓↓
每一个事件←→子集
这样我们就把事件和集合对应起来了,用已有的集合间关系来分析事件间的关系。
集合的并→两事件的并事件(和事件)
集合的交→两事件的交事件(积事件)
在此过程中要注意帮助学生区分集合关系与事件关系之间的不同。
(例如:两集合A∪B,表示此集合中的任意元素或者属于集合A或者属于集合B;而两事件A和B的并事件A∪B发生,表示或者事件A发生,或者事件B发生。)
「设计意图」为更好地理解互斥事件和对立事件打下基础,
⑵思考:①若只掷一次骰子,则事件c1和事件c2有可能同时发生么?
②在掷骰子实验中事件G和事件H是否一定有一个会发生?
「设计意图」这两道思考题都很容易得到答案,主要目的是为引出接下来将要学习的互斥事件和对立事件,让学生从实际案例中体验它们各自的特征以及它们之间的区别与联系。
⑶总结出互斥事件和对立事件的概念,并通过多媒体的图形演示使学生们能更好地理解它们的特征以及它们之间的区别与联系。
⑷练习:通过多媒体显示两道练习,目的是让学生们能够及时巩固对互斥事件和对立事件的学习,加深理解。
㈡概率的基本性质:
⑴回顾:频率=频数/试验的次数
我们知道当试验次数足够大时,用频率来估计概率,由于频率在0~1之间,所以,可以得到概率的基本性质、
(通过对频率的理解并结合前面投硬币的实验来总结出概率的基本性质,师生共同交流得出结果)
3、典型例题探究
例1一个射手进行一次射击,试判断下列事件哪些是互斥事件?哪些是对立事件?
事件A:命中环数大于7环;事件B:命中环数为10环;
事件c:命中环数小于6环;事件D:命中环数为6、7、8、9、10环、
分析:要判断所给事件是对立还是互斥,首先将两个概念的联系与区别弄清楚
例2如果从不包括大小王的52张扑克牌中随机抽取一张,那么取到红心(事件A)的概率是1/4,取到方块(事件B)的概率是1/4,问:
(1)取到红色牌(事件c)的概率是多少?
(2)取到黑色牌(事件D)的概率是多少?
分析:事件c是事件A与事件B的并,且A与B互斥,因此可用互斥事件的概率和公式求解;事件c与事件D是对立事件,因此P(D)=1—P(c).
「设计意图」通过这两道例题,进一步巩固学生对本节课知识的掌握,并将所学知识应用到实际解决问题中去。
4、课堂小结
⑴理解事件的关系和运算
⑵掌握概率的基本性质
「设计意图」小结是引导学生对问题进行回味与深化,使知识成为系统。让学生尝试小结,提高学生的总结能力和语言表达能力。教师补充帮助学生全面地理解,掌握新知识。
5、布置作业
习题3、1A1、3、4
「设计意图」课后作业的布置是为了检验学生对本节课内容的理解和运用程度,并促使学生进一步巩固和掌握所学内容。
五、板书设计
概率的基本性质
一、事件间的关系和运算
二、概率的基本性质
三、例1的板书区
例2的板书区
四、规律性质总结
比的基本性质说课稿2
尊敬的各位领导,老师们:
大家好!今天,我很高兴能站在这里,向大家展示我的说课。我的说课内容是《分数的基本性质》。我将从以下这些方面来进行说明。
一、教材分析(课件)
《分数的基本性质》是人教版九年义务教育小学数学第十册中的内容。本节课内容是在分数的意义,以及分数与除法关系的基础上进行教学的。是后面进一步学习约分、通分以及分数运算的重要依据,因此本节内容将起着举足轻重的作用。
二、教学目标(课件)
根据教材内容及学生的认知水平,我制定了以下教学目标:
1..使学生理解与掌握分数的基本性质。
2.培养学生观察、比较、分析、概括等方面的能力。
三、教法和学法(课件)
为了使学生成为课堂的主人,我巧妙的扮演着引导着、组织者的角色。设计了情景设疑、观察发现、小组合作的教学方法。
新课程标准提倡:过程重于结果。有效的数学活动不能单纯的依靠模仿与记忆。因此我引导学生去动手操作,自主探究,游戏比赛等形式来组织教学。
四、教学过程(课件)
结合五年级学生的理解能力和年龄特征,我将本课的教学,设计了四个环节。
(一)、创设情境、引发猜想(课件)
首先、我为学生带来了一个猴王分饼的故事:猴山上的猴子们都爱吃猴王做的饼。一天,猴王做了三张同样大的饼。猴王把第一张饼平均切成了两块,给了猴1一块。(课件)猴2看见了,眼馋的说:“猴王,猴王,我要两块。”猴王笑眯眯的说:“别急,别急,给你两块。”只见猴王把第二张饼平均分成了四块,给了猴2两块。(课件)猴3更贪心:“我要六块,我要六块。”猴王想了想,把第三张饼拿出来,平均切成了十二块,果真给了猴3六块。
“同学们,你们听完故事后,觉得哪知猴子分得饼最多?”
一上课,先听一段故事,学生们自然非常乐意,并会立即被吸引,积极的思考故事中的问题。通过这样的故事设疑,马上激起了学生探求新知的欲望。
(二)、动手操作、初步感知(课件)
我让学生把准备好的三张圆片,拿出来代替猴王做的饼,分别按照折,画,涂的步骤,表示出每只猴子所得的饼,并用分数表示涂色部分。在这个过程中,学生必然会对那三个图形进行观察和比较,从中有所发现。(课件)通过多媒体的直观演示,学生更加确定,三只猴子分的饼确实一样多,有了实物的直观对比,学生不难理解,三个分数大小相等。可是为何分数的分子、分母不同,大小却相等?在此处,又设下悬疑,充分调动了学生的好奇心。这一情境的设置,主要是让学生在动手操作过程中不仅复习了分数的意义,为下面导入新知作好铺垫、迁移。并且在教学一开始,就能抓住学生爱动手以及直观思维的特点,营造出良好的学习开端。接着,我因势利导,安排下一环节:
(三)比较归纳、揭示规律(课件)
(1)我板书这组分数后,请学生观察:从左往右看,分子是怎么变的?分母是怎样变的?此时我将主动权全都交给了学生,先独立思考,然后在四人小组中交流讨论,最后汇报结果。有的小组认为分子加了1,分母加了2等。我都笑而不答。而是鼓励学生逐一去验证各种猜想是否具有规律性。使学生在探索中发现,在发现中成长。直到有些学生发现分数的分子分母同时乘了2和3时,我及时给予了肯定和表扬。此时,为了突破本节课的重难点,我设计了一道填空题,可以很好的.引导学生概括出这一发现,并让多名学生说一说。这样的设计,既培养了学生的概括能力,并为进一步学习增强了信心。在此基础上,我再布置一个任务:你再从右往左看,又有什么规律?有了前面的经验,这时学生很快得出:分数的分子、分母同时除以一个相同的数,分数的大小也不变。
(2)就在学生享受成功的喜悦时,我抛出了一个问题:分数的分子分母如果同时乘或除以0,会是什么结果?学生顿时领悟:要0除外。
(3)最后,我建议学生用一句话来归纳这两个发现,师生共同完善规律。此时我才板书课题,并告诉学生这一规律就叫分数的基本性质,使学生明确了本节课的教学内容。
(4)现在,学生明白了聪明的猴王原来是利用分数的基本性质来分饼的。即满足了猴子们的要求,又分的那么公平。(课件)如果猴4想要八块怎么办?如此设计,既首尾呼应,又培养了学生灵活解决实际问题的能力。
课堂的高潮之后,我启发学生还可以用商不变的性质来说明分数的基本性质,沟通新旧知识的联系。
(四)多层联系、巩固深化
练习的设计是巩固新知最有效的方法。我尽量给枯燥的练习赋予丰富多彩的形式。因此我精心设计的整套练习都是以游戏加比赛的方式来进行。(课件)首先,我安排男、女生以抢答的形式,来填空,重点要让学生说出解题依据。接着,我又设计了师生互动的游戏:我的分子填4,你的分母填多少?我的分母填48,你的分子填多少?最后在两个小组抢摘苹果的游戏中结束本节课的教学活动。
五、板书设计
说说我的板书设计,它遵循了目的性原则、概括性原则、直观性原则,能帮助学生把整堂课的学习内容融入大脑。
总结:我在整堂课的设计中努力体现“趣”“实”“活”三个字。以猴王分饼为主线,贯穿全文。由情景导入到动手操作,自主探究,最后归纳规律,使学生不仅学到科学的探究方法,而且体验到探索的乐趣,领略成功的喜悦。新课程标准的要求得到了完美体现。
我的说课到此结束,谢谢大家。
比的基本性质说课稿3
各位评委:
大家好,今天我说课的内容是人教版小学数学第32—34页的《比例的意义和基本性质》。下面我将自己的设计理念、对教材的解读、对目标的预设以及教学流程和设计意图向大家作简要的阐述。
[设计理念]:
这是一节概念课,但我并不是对知识简单的复述,而是通过学生的探究活动,展现学生“活生生”的思维过程。数学课堂教学,需要必要的生活情境,现实生活中也蕴涵着大量的数学信息,因此在本节课中,我不仅注重让学生体验比例在生活中的应用,更注重“数学化”和“生活化”的结合。并根据学法指导自主性和差异性原则,让学生在观察—讨论—归纳—猜想的过程中,自主参与知识的发现、发展、形成的过程,使教法与学法融为一体。心理学家皮亚杰曾说过:“一切真理都要让学生自己去获得,由他重新去发现,而不是草率的传递给学生”。学生通过观察比较,发现规律,从特殊到一般抽象概括出意义和性质,培养了学生主动探索知识和概括知识的能力。
[教材分析]:
比例的知识在工农业生产和日常生活中有广泛的应用。这部分知识是在学习了比的知识和除法、分数等得基础上教学的,主要属于概念教学。因为这节课是在整个比例单元教学中的第一节,是为以后解比例,讲解正、反比例做准备的。学生学好这部分知识,不仅可以初步接触函数的思想,而且可以用来解决日常生活中一些具体的问题。
[教学目标]
知识技能目标:
1、理解比例的意义,掌握比例的各部分名称、能正确地读写比例,能根据比例的意义正确地写出比例,会判断两个比能否组成比例。
2、理解并掌握比例的基本性质,能根据比例的基本性质写出比例。
情感态度目标:
培养学生自主参与的意识、主动探究的精神,激发学生的审美愉悦。培养学生进行初步的观察、分析、比较、判断、概括的能力,发展学生思维。
教学重点:
理解比例的意义,探究比例的基本性质。
教学难点:
探究比例的基本性质和应用意义,判断俩个比能否组成比例。
[教学设计]
一、创设情境引发思考
多媒体出示有关国旗的四幅情境图,让学生说说图的内容,并找找图中共有的东西。接着出示四面国旗的长和宽的具体数据,并提示国旗的指定有着特定的制作标准,然后让学生去思考,猜测。
二、探究新知主动参与
这里分成二部分:第一部分,教学比例的意义;第二部分,教学比例的基本性质。
第一部分:比例的意义
1、根据学生的发现,让学生任意地选择其中的两面国旗,先写出长和宽的比,再求出比值进行验证自己的猜测对不对。
2、把学生的计算结果出示在黑板上(四面国旗都有)接着请学生仔细观察计算结果发现了什么,发现他们的比值都相等。从而引出比例的意义。
3、揭示了比例的意义后及时进行练习。判断几组比能否组成比例,为什么?让学生说理巩固概念。
4、回到四面国旗,让学生找比组成比例。(可以是国旗的长与宽的比,每两面国旗长之比,宽之比)这里教师要适时引导,鼓励学生打开思路,从不同的角度去寻找,以加深对比例意义的认识。
5、练习,p33的`做一做
第二部分:比例的基本性质
1、教学比例的各部分名称。这部分的教学,我采用了阅读自学法。实施素质教育,使学生由“学会”变“会学”,这里我注重培养学生的自学能力。在学生自学课本时,老师写出比例的两种形式,引导学生注意内项和外项的位置。认识了比例的各部分名称后让学生说说比与比例的区别。
2、教学比例的基本性质。观察黑板上的比例中的两个内项的积与两个外项的积的关系,引导学生把两个外项与两个内项分别相乘,比较结果,然后引导他们回答两个内项的积与两个外项的积有什么关系?再让学生归纳出比例的基本性质,探讨写分数形式,归纳“交叉相乘”积相等。
3、练习,p34的做一做
4、小结判断两个比能否组成比例,可以根据比例的意义,
比的基本性质说课稿4
一、说教材
小学数学冀教版第十册第单元《等式的基本性质》是学生已经掌握了方程的意义的基础上学习的。《等式的基本性质》是本单元的重点,更是今后学习解方程的基础。
我搜集了人教版的教材近行对比,发现:虽然版本不同,内容编排不同但是数学学习内容大体相同,都以学生的动手实践,自主探究与合作交流为学生学习数学的主要方式。整个过程中,教师只是探究活动的组织者、引导者、合作者。在这里值得一提的就是我们现在的版本把等式的基本性质一和性质二都是以文字的内容具体的呈现了出来,而人教版教材是通过游戏的'方式呈现的,具体的性质内容是在后来的解方程当中逐步体现的。我个人觉得现在的版本还是可取的。
二、说教学目标
根据大纲的要求和教材的特点,结合五年级学生的特点我制定了如下教学目标:
知识目标:
1、理解并能用语言表述等式的基本性质,能用等式的基本性质解决简单问题。
能力目标:
1、在用算式表示试验结果、讨论、归纳等活动中,经历探索等式基本性质的过程。
2、通过学习理解并能运用等式的基本性质解决简单问题。
情感目标:培养学生讨论归纳的意识和习惯,养成认真观察、深入思考的良好思维品质。
结合学生的实际情况,我把教学重难点确定为:
教学重点:理解并能用语言表述等式的基本性质,能用等式的基本性质解决简单问题。
教学难点:理解并能用语言表述等式的基本性质,能用等式的基本性质解决简单问题。
教学具准备:天平,教学课件,学生导学案等材料
三、说学情分析
学生已经习惯进行高效课堂模式下的学习,具有一定的探究与合作交流能力。在学习了方程的意义的基础上,再加上对天平已有知识的经验积累,应该根据我的教学设计能够一步步研究出等式的基本性质。当然由于学生的理解能力的差异,对于学困生还是应该照顾到。为了实现上述教学目标,我精心进行教学设计,引领学生课堂生成:
四、说教学过程(以学生的自主探究为主)
(一)、速算比赛:
6。6÷11= 128÷3。2= 250×12= 60×0。2=
36÷180= 2。6×10= 190×0。4= 74÷0。2=
这几道题是一直以来坚持的口算训练。不过在处理上采取了比赛的方式,时间是一分钟,我公布答案后学生迅速自评,并由组长算出组内共算对了多少道题,以此作为标准评出优胜小组,并及时进行加分评价。
(二)、创设情境
教师导语:刚才的比赛中某某组表现的很棒,为他们组赢得了宝贵的2分,希望在接下来的学习中继续发扬这种精神,同时老师更希望其他组能有出色的表现。上节课我们用了什么仪器了方程的意义呢?(学生肯定会异口同声的说是天平)教师随机出示天平。每组一台。我们这节课还利用天平学习,学习什么呢?请大家看导学案并齐读课题和目标。教师相机板书。
(三)、独学导学一
导学一:
小实验1、根据图片演示实验。列式为()
实验2、在天平左边的托盘里再放入20克的砝码,这时天平出现什么情况?接着再天平右边的托盘里放入20克砝码。根据这时天平的情况列式()
实验3接着再在天平左右两边同时放入100克砝码,天平会怎么样?可以列出等式()
实验4接着在天平左边的托盘里再拿走20克的砝码,在天平右边的托盘里再拿走20克的砝码。天平会怎样可以列出等式()?
总结:通过上面的实验:观察上面的4个等式,你发现了什么?
学生根据我的设计大多数同学根据已有经验会很快列出算式,可能有同学会利用我给出的天平来验证,独学充分后教师要做好评价。
(四)、对学、群学。
学生充分独学后,对子之间交流进入对学阶段。对子之间交流,交流完后组长组织组内组内总结展示。小组长要根据情况确定待展同学。教师巡视观察那个组利用天平利用的效果好准备接下来的精英展示。教师要关注学困生。特别是双差生。教师还要做评价。
(五)、精英展示
我这个环节准备一组或两组展示。展示的方式可以是一人也可以是多名同学一块展示。教师要做好规律的总结提升和及时的评价,特别是听展。教师利用课件出示学生列出的每个等式。
五、完成导学二。
导学二(1)根据图片写等式
(2)根据图片写等式:
比较上面两组等式,你发现了什么规律?
有了学习经验,这个环节应该很顺利。还是按照高效模式进行,在教学中注意利用教学课件突破学生理解上的难点。有的小组可能还会出现加减的情况,教师要适当引导到倍数关系。
达标训练:(1)30+x=100(2)x — 71=4
30+ x—30=100()x–71+()=4()
x=()x=()
(3)21 x=105(4)x ÷21=3
21x÷()=105()x÷21×()=3()
x=()x=()
学生理解了等式的基本性质理论,我觉得由理论到实践应该给学生一个过渡空间,所以我设计了这一环节。学生独立完成后挑选组长进行展示,此时教师重点强调学生填空的依据,这样就更好的巩固了刚学完的理论。完成后教师小结。引导学生谈收获。
最后是达标测评。我选的是教材42页的第一题。学生做完后教师公布答案,学生互评。教师要做好评价。
比的基本性质说课稿5
各位老师:
下午好!我今天说课的内容是北师大版小学数学第九册《分数基本性质》首先,对教材进行分析。
一、教材分析
《分数基本性质》是北师大版小学数学第九册内容。是在三年级下册已经体验了分数产生的过程,认识了整体“1”,初步理解了分数的意义,能认、读、写简单的分数,会简单的同分母分数加减法的基础上,学习真假分数,分数基本性质,约分通分、比大小等知识,为后续学习分数与小数互化、分数乘除法四则混合运算打好基础。
二、学情分析
学生已经知道了真假分数,掌握了分数与除数的关系及商不变性质,再来学习分数基本性质。分数的基本性质是一种规律性知识,分数的分子分母变了,分数的.大小却不变。学生在这种“变”与“不变”中发现规律,掌握新知识。
根据教材分析和学生情况,制定如下教学目标
三、教学目标
1.知识目标:经历探索分数基本性质的过程,理解并掌握分数的基本性质,能运用分数的基本性质把一个分数化成指定分母(或分子)而大小不变的分数。
2.能力目标:培养学生观察、比较、抽象、概括等初步的逻辑思维能力,并且能够正确认识和理解变与不变的辨证关系。
3.情感目标:经历观察、操作和讨论等数学学习活动使学生进一步体验数学学习的乐趣。通过学生的成功体验,培养学生热爱数学的情感。
依据教学目标,确定教学重难点
四、教学重难点
能运用分数的基本性质把一个分数化成指定分母(或分子)而大小不变的分数
理解分数基本性质的含义,掌握分数基本性质的推导过程。
五、教学方法
根据本节课的教学内容和教学目标采用讲授法,小组合作学习。
六、教具学具准备
准备大小相等的圆形纸片,水彩笔等。
七、教学过程:分六个环节
(一)故事设疑,揭示课题。我将以唐僧师徒分饼的故事创设问题情景。八戒吃第一块饼的14,沙和尚吃第二块饼的28,悟空吃第三块饼的416,他们谁吃的多呢?以此引入新课,激发学生思考的兴趣,积极参与到课堂教学中来。并在这个环节设计学生动手折、画、标等活动,折出14,28,416,用彩笔在折的圆上涂出14,28,416,再用铅笔标出分数。在动手做的过程中初步理解分数基本性质。
(二)合作探索,寻找规律。请同学们观察14,28,416 ; 3|4,68,1216这两组分数,分子分母有什么变化,分数又有什么变化?组织讨论交流汇报。如果没有概括出“把0除外”就设计一组练习:分子分母同乘0,完善结论;如果概括出来了,就顺势进行验证。推导出分数基本性质-----分数的分子分母都乘或除以相同的数(0除外),分数的大小不变。
(三)巩固练习。
练习题的设计有简单到复杂,例:分数的分子乘5,要使分数的大小不变,分母 ( );23=()18621=2()等这样的题,进行练习。
(四)梳理知识,沟通联系。
小结分数基本性质,请同学们回忆“商不变性质”。------在除法中,被除数和除数同时扩大(或缩小)相同的倍数(零除外),商不变。
然后比较这两个性质的联系。这样设计主要是为了共建知识之间的联系,有助于学生灵活迁移应用,触类旁通。
(五)多层练习,巩固深化。
我将设计从巩固到思维拓展三个层次的练习。
1.
2. (1)把5/6和1/4化为分母为12而大小不变的分数。
(2)把2/3和3/4化为分子为6而大小不变的分数。
3.考考你:1/4的分子加上3,要使分数的大小不变,分母应加上( )。
(六)全课小结
现在让我们看板书,回忆这节课学到了什么知识,比上眼睛想一想,觉得把内容记下了,就微笑一下,是不是觉得学习是件快乐的是呢?
比的基本性质说课稿6
一、教材简析和教材处理
1.教材简析
《分数的基本性质》是九年义务教育六年制小学数学课本(西师大版)第十册第15-16页的内容。在小学数学学习中起着承前启后、举足轻重的作用,它既与整数除法的商不变性质有着内在的联系,也是后面进一步学习分数的计算、比的基本性质的基础。分数的基本性质是一种规律性知识,分数的分子分母变了,分数的大小会变吗?分数的分子分母如何变化,分数的大小不变呢?学生在这种“变”与“不变”中发现规律。
2.教材处理
以前,教师通常把《分数的基本性质》看作一种静态的数学知识,教学时先用几个例子让学生较快地概括出规律,然后更多地通过精心设计的练习巩固应用规律,着眼于规律的结论和应用。随着课程改革的深入,教师们越来越重视学生获取知识的过程,但我们也看到这样的现象:问题较碎,步子较小,放手不够,探究的过程体现不够充分。《分数的基本性质》可不可以有别的`教学思路呢?新的课程标准提出:“教师应向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法。根据这一新的理念,我认为教师可以为学生创设一种大问题背景下的探索活动,使学生在一种动态的探索过程中自己发现分数的基本性质,从而体验发现真理的曲折和快乐,感受数学的思想方法,体会科学的学习方法。所以,教师的着眼点,不能只是规律的结论和应用,而应有意识地突出思想和方法。
二、教学课件设计意图
场景一:故事引人,揭示课题。
有位老爷爷把一块地分给三个儿子。老大分到了这块地的三分之一,老二分到了这块地的六分之二。老三分到了这块的九分之三。老大、老二觉得自己很吃亏,于是三人就大吵起来。刚好阿凡提路过,问清争吵的原因后,哈哈的笑了起来,给他们讲了几句话,三兄弟就停止了争吵。
让学生发表自己的意见,教师出示三块大小一样的纸,通过师生折、观察和验证,得出结论:三兄弟分得的一样多。
一上课,先听讲一段故事,学生非常乐意,并会立即被吸引。思考故事当中提出的问题,学生自然兴趣浓厚。通过故事设疑,激起了学生探求新知的欲望。
场景二:发现问题,突出质疑。
既然三兄弟分得的一样多,那么表示它们分得土地的分数是什么关系呢?这三个分数什么变了,什么没有变?让学生小组讨论后答出:这三个分数是相等关系,它们平均分的份数和表示的份数也就是分数的分子和分母变化了,但分数的大小不变。
3.引入新课:下面算式有什么共同的特点?学生回答后
它们各是按照什么规律变化的呢?场景三:比较归纳,揭示规律。
1.出示思考题。
比较每组分数的分子和分母:
(1)从左往右看,是按照什么规律变化的?
(2)从右往左看,又是按照什么规律变化的?
让学生带着上面的思考题,看一看,想一想,议一议,再翻开教科书看看书上是怎么说的。
2.集体讨论,归纳性质。
(1)从左往右看,由1/4到2/8,分子、分母是怎么变化的?引导学生回答出:把1/4的分子、分母都乘以2,就得到2/8。原来把单位“1”平均分成4份,表示这样的1份,现在把分的份数和表示份数都扩大2倍,就得到2/8。
(2)3/4是怎样变化成9/12的呢?怎么填?学生回答后填空。
(3)引导口述:3/4的分子、分母都乘以2,得到6/8,分数的大小不变。
(4)在其它几组分数中,分子、分母的变化规律怎样?几名学生回答后,要求学生试着归纳变化规律:分数的分子和分母都乘以相同的数,分数的大小不变。
(5)从右往左看,分数的分子和分母又是按照什么规律变化的?通过分析比较每组分数的分子和分母,得出:分数的分子和分母都乘以相同的数,分数的大小不变。
(6)对照教科书中的分数基本性质,让学生说出少了什么?(少了“零除外”)讨论:为什么性质中要规定“零除外”?
出示的思考题是学生探求新知、独立思考的指南,教师环紧扣的提问以及引导学生逐步展开的充分的讨论,帮助学生一步步走向结论。]
3.出示例2:把3/4和15/24化成分母是8而大小不变的分数。
思考:要把3/4和15/24化成分母是8而大小不变的分数,分子怎么不变?变化的依据是什么?
通过举例,沟通分数的基本性质与商不变性质之间的联系。引导学生运用分数与除数的关系,以及整数除法中商不变的性质,说明分数的基本性质。
如:
[有助于学生顺利地运用分数与除法的关系,以及整数除法中商不变性质说明分数的基本性质,实现新知化归旧知。]
场景四:多层练习,巩固深化。
1.口答。
学生口答后,要求说出是怎样想的?
2.判断对错,并说明理由。
运用反馈片判断,错的要求说明与分数的基本性质中哪几个字不相符。
3.在下面()内填上合适的数。
练习设计由易到难,由浅入深,既巩固新知,又发展思维,其间还自然地渗透思想品德教育。师生对出数做题,能够创设民主和谐的学习气氛。通过举例,还渗透了函数思想。
比的基本性质说课稿7
我说课的内容是鲁教版义务教育课程标准实验教科书,七年级数学(下)第十一章第二节《不等式的基本性质》。下面,我从以下几个方面对本节课的教学设计进行说明。
一、教材分析
第十一章《一元一次不等式和一元一次不等式组》是在学习了数轴、等式性质、解一元一次方程、一次函数的基础上,从研究不等关系入手,展开对不等式的基本性质、不等式的解集、解一元一次不等式(组)、一元一次不等式与一次函数的研究学习。本课题为第十一章第二节《不等式的基本性质》。它在教材中起着承上启下的作用。关于它的学习以等式的基本性质为基础,它是学生以后顺利学习一元一次不等式和一元一次不等式组的解法的重要理论依据,是学生后继学习的重要基础和必备技能。
二、教学目标
知识目标:
1、经历不等式基本性质的探索过程,初步体会不等式与等式的异同。
2、掌握不等式的基本性质,运用不等式的基本性质将不等式变形。
能力目标:
1、培养学生类比、归纳、猜想、验证的数学研究方法。
2、发展学生的符号表达能力、代数变形能力。
3、培养学生自主探索与合作交流的能力。
情感目标:让学生感受生活中数学的存在,并且在自主探索、合作交流中感受学习的乐趣。
三、教学重点和难点
重点:掌握不等式的基本性质并能正确运用将不等式变形
难点:不等式基本性质3的运用
四、教法分析
活动是影响人发展的决定性因素,学生的学习只有通过自主活动并从中体验、感悟、建构自己的知识经验,培养积极的学习情感,才能得到自身的发展。但学生主动参与学习活动的方向,活动过程的积极化离不开教师的“导”。本节课我采用从生活中创设问题情景的方法激发学生学习兴趣,采用类比等式性质创设问题情景的方法,引导学生的自主探究活动。在整个探究学习的过程充满师生之间,生生之间的交流和互动,体现教师是教学活动的组织者、引导者、合作者,学生才是学习的主体。
五、学法分析
“教为不教,学为会学”,“授之以鱼”更要“授之以渔”。在教的过程中,关键是教学生的学法,本节课教给学生类比,猜想,验证的问题研究方法,培养学生善于动手、善于观察、善于思考的学习习惯。利用学生的好奇心设疑、解疑,组织活泼互动、有效的教学活动,鼓励学生积极参与,大胆猜想,使学生在自主探索和合作交流中理解和掌握本节课的内容。
六、教学过程分析
(一)本节教学将按以下五个流程展开:
回顾思考,引入课题
创设问题情景,探索规律
尝试练习,应用新知
总结反思,获得升华
布置作业,深化巩固
(二)教学过程
1、回顾思考,引入课题
观察下面两个推理,说出等式的基本性质
(1)∵a=b
∴a±3=b±3
a±(x2+2y)=b±(x2+2y)
(2)∵a=b
∴3a=3b
-a/4=-b/4
提出问题:那么不等式有没有类似的性质呢?引入课题。
[设计意图:“有效的教学一定要从学生已经知道了什么开始”。不等关系与相等关系有着辨证的'关系。学生已经在六年级上册学习了等式的基本性质,因此,要类比等式的基本性质进行不等式基本性质的教学。课堂开始通过回顾旧知识,抓住新知识的切入点,使学生进入一种“心求通而未得,口欲言而未能”的境界,使他们有兴趣的进入数学课堂,为学习新知识做好准备。]
2、创设问题情景,探索规律
问题1:在天平两侧的托盘中放有不同质量的砝码。
右低左高说明右边的质量大于左边的质量。往两盘中加入相同质量的砝码,天平哪边高,哪边低?减去相同质量的砝码呢?(拿一个天平让学生亲手操作,获得直观感受)
[设计意图:数学源于生活,问题1的设计是为了从学生的生活经验出发,让学生感受生活中数学的存在,不仅激发学生学习兴趣,而且可以让学生直观地体会到在不等关系中存在的一些性质]
问题2:在不等式的两边加上或减去相同的数,不等号的方向改变吗?
如不等式7>4,-1<3不等式的两边都加5,都减5。不等号的方向改变吗?你能得出什么结论?再举几例试试,验证你所得的结论正确吗?(让学生先独立思考,后合作交流)
一般学生会得到:不等式的两边都加上(或减去)同一个数,不等号的方向不变。
这时可提出问题:把“数”的范围扩大到整式可以吗?
学生讨论可能得出结论:可以,因为整式的值就是实数。
让学生归纳总结:不等式的两边都加上(或减去)同一个整式,不等号的方向不变。(教师板书:不等式的基本性质1)
引导学生说出符号语言:
如果a
如果a>b,那么a+c>b+c,a-c>b-c(教师板书)
[设计意图:类比等式的基本性质,研究不等式的性质,让学生体会数学思想
方法中类比思想的应用,并训练学生从类比到猜想到验证的研究问题的方法,
让学生在合作交流中完成任务,体会合作学习的乐趣。]
问题3:若不等式两边同乘以或除以同一个数,不等号的方向改变吗?
如不等式2<3,两边同乘以5,同除以5(即乘以1/5),同乘以0,同乘以-5,同除以-5。你能得出什么结论?再举几例试试,验证你所得的结论正确吗?
(结合不等式基本性质1的探索方法,学生可能很快就探索出不等式的基本性质2、3)
让学生归纳总结:不等式的两边都乘以(或除以)同一个正数,不等号的方向不变;
不等式的两边都乘以(或除以)同一个负数,不等号的方向改变。
(教师板书:不等式的基本性质2,不等式的基本性质3)
引导学生说出符号语言:
如果a>b,c>0,那么ac>bc
如果a0,那么ac 如果a>b,c<0,那么ac 如果abc (教师板书) 一、教学内容的说明 《分数的基本性质》一课是五年级下册的一个内容。学习本内容之前,学生已清楚理解分数的意义,明确分数与除法的关系,商不变性质等知识,这些都为本课学习做了知识上的铺垫。本课在小学数学学习中起着承前启后、举足轻重的作用,它既与整数除法的商不变性质有着内在的联系,也是后面进一步学习约分、通分、分数计算的基础。 二、学情分析 学生在三年级上学期已经初步认识了分数,知道分数各个部分的名称,会读、写简单的分数,会比较分子是1的分数,以及同分母分数的大小。还学习了简单的同分母分数的加、减法。在本学期又学习了因数、倍数等概念,掌握了2、3、5的倍数的特征,为学习本单元知识打下了基础。 三、教学目标 依据新的《数学课程标准》,为了更好地体现数学学习对学生在数学思考、解决问题以及情感与态度等方面的要求。根据本节课的具体内容并结合学生的实际情况,我制定了以下教学目标: 1.使学生理解与掌握分数的基本性质,能运用它改变分数的分母与分子,而使分数的大小不变。 2.培养学生观察、比较、分析、概括等方面的能力。 3、通过实践活动,鼓励学生动手进行科学的验证,培养其勇于探索,勇于创新的意识。 四、教学重点、难点 教学重点: 理解和掌握分数的基本性质,运用分数的基本性质解决实际问题。 教学难点 学生通过猜想和动手验证,抽象概括出分数的基本性质。 五、教法学法的选择 教法:本着“以学生发展为本”、“以学定教”的思想,按照学生学习的认知规律,在探究分数的基本性质过程中,主要采取学生动手操作、小组讨论、合作探究等方式,引导学生进行比较、观察、分析,充分运用知识迁移的规律,在感知的基础上加以抽象、概括,进行归纳整理,采取迁移教学法、引导发现法组织教学。 学法:有效的数学学习活动,不能单纯模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。在学习例题的过程中学生主要采用自学尝试法,独立自主地学习将分数化成分母不同但大小相同的分数,并尝试完成做一做,达到检验自学的目的。通过观察、比较、提出问题并解决问题来进行自主探索与合作交流,充分发挥学生主体参与作用、激发学生学习爱好,同时让学生获得成功体验。 六、教学过程的设计 为了全面、准确地引导学生探索发现分数的基本性质,实现教学目标,我努力抓住学生的思维生长点组织教学,设计了“1.创设情境——引发思考2.引出新知——动手实践3.初步感知——引导观察4.发现规律——巩固练习5.课堂小结——加深理解 ”五个环节。 一、创设情境,引发思考 1、上课开始我引入了故事:有一天妈妈给淘气做了一个香喷喷的大蛋糕,蓝猫看见了也想吃。淘气说:我只有一个蛋糕,要不我分给你一些吧,我有三种分法,请你选择一种: 第一种:把蛋糕平均分成2份,送给你其中的一份,也就是这个蛋糕的1/2; 第二种:把蛋糕平均分成4份,送给你其中的2份,也就是这个蛋糕的2/4; 第三种:把蛋糕平均分成8份,送给你其中的4份,也就是这个蛋糕的4/8。 选择哪一种分法吃到的蛋糕最多呢? 同学们,如果你是蓝猫,你会选择哪一种呢? 先听讲一段故事,学生非常乐意,并会立即被吸引。思考故事当中提出的问题,学生自然兴趣浓厚。通过故事设疑,激起了学生探求新知的欲望。 二、对于分数基本性质的理解 分为3个层次 借助长方形纸条来理解。通过观察、举例、验证,初步理解和总结(分数的分子和分母同时乘或除以相同的数分数的大小不变。)——总结完善分数的基本性质。 1、借助长方形纸条理解 这里分成两份层次(1)借助直观图理解(2)分析分数理解 (1)借助直观图理解。 首先,引导学生在同样大的长方形纸条上分别表示出、、想一想为什么为什么分的份数不一样,取的.份数也不一样可他们最后分的大小却会相同呢? (2)借助分数理解 在学生清楚的知道了三个分数为什么会相等后,从图在回到抽象的三个分数上,说一说, 他们的分子、分母是怎样变化的。说明白后,明确分的份数就是分母,取得分数就是分子,在板书上改为“分母扩大了两倍、四倍,分子也相应扩大了两倍、四倍,分数大小不变” 2、通过观察、举例、验证,初步理解和总结(分数的分子和分母同时乘或除以相同的数分数的大小不变。) 总结规律是在大量的直观的数据或练习的基础上实现的。为了给学生便于学生总结,我设计了“你还能举出一个和3/6大小相等的分数吗?你是怎样想的?如果想让分子是9,分母是? 想让分母是18,分子呢?”一方面学生利用了分数的基本性质做了一些基础的题,另一方面在叙述你是怎样想的时候,其实也是对分数基本性质的概括。这样当“用一句话总结你的发现”的时候,在语言叙述上就没有什么障碍了。 3、关于“同时”“相同的数““0除外”的理解 两种预设,在总结出“分数的分子、分母同时乘或除以相同的数,分数的大小不变。”让学生说说自己的理解,如果有有学生提出就上提出的学生说一说,如果没有主动提出,就通过做个练习题,“2/3哪样列式行吗?为什么?”。让学生说一说通过做这两个题你有什么想提醒大家的。 四、巩固练习 根据本节课的内容,在练习上我设计三个不同层次的练习,首先是针对大多数的基础性练习,如填空、判断。其次是稍有变动的,需要结合分数与除法关系完成的变式练习。 最后为了满足优等生的需要还涉及了以下练习 5/9的分母加9,分子加几,分数的大小不变。 板书: 分数的基本性质 1/2==2/4=4/8 分数的分子和分母同时乘或者除以相同的数(0除外),分数大小不变。 各位评委、老师: 你们好!我是尚市镇中心小学的王方。我说课的课题是《分数的基本性质》,接下来我将从说学生、说教材、说教法学法、说教学程序、说板书设计、说反思等几个方面来进行说课。 一、说学生 学生在学习本内容之前已经理解了分数的意义,明确了分数与除法之间的关系、商不变的性质等知识,这些为本课学习作了铺垫。而五年级的学生已具有一定的分析和解决问题的能力,能在教师的引导下完成“质疑—探索—释疑—应用”这一完整的学习过程。 二、说教材 1、教材分析: 《分数的基本性质》是人教版小学数学五年级下册第四单元中的内容,在小学数学中起着承前启后的作用。它既与整数除法商不变的性质有着内在联系,也是后面学习约分、通分、分数计算的基础,在整个分数教学中也占有非常重要的地位。 2、教学目标: 结合对教材的分析,我确定了以下教学目标: 知识与技能目标: 理解和掌握分数的基本性质,能运用分数的基本性质改变分数的分母与分子,而使分数的大小不变。 过程与方法目标: 让学生经历分数基本性质的发现、归纳过程,培养学生小组合作的意识和能力,渗透迁移的教学思想。 情感态度与价值观目标: 让学生在主动探索新知识的过程中获得成功的体验,体会分数的基本性质在生活中的应用。 3、教学重点和难点: 重点:理解和掌握分数的基本性质,运用分数的基本性质解决实际问题。 难点:学生通过猜想和动手验证,抽象概括出分数的基本性质。 4、教学准备: 学生准备三张形状大小一样的纸片、彩笔,老师准备课件、分数卡片。 三、说教法学法 教法: 本着 “以学定教”的思想,我以自主探究为主线,以发展创新为宗旨,主要采用创设情境、引导探究、引导发现、组织讨论、组织练习等教法,让学生全程、全面、全心地参与到每一个教学环节中。 学法: 新课标指出:有效的数学学习活动,不能单纯模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。基于这样的理念,本课学生的学法主要有:自主发现法、操作体验法、合作交流法、自学尝试法等。当然,由于学生思维方式的不同,教师要尊重学生的选择,允许学生用自己喜欢的方式学习数学。 四、说教学过程 为实现教学目标,我将本课的教学程序设计了以下四个环节: (一)创设情境,引发猜想 首先我为学生带来一个《猴王分饼》的故事:猴王做了三个大小一样的饼,它先把第一个饼平均切成两块,分给猴1一块;又把第二个饼平均切成四块,分给猴2两块;接着又把第三个饼平均切成八块,分给猴3四块。听完故事,我问道:“同学们,哪只小猴分的饼最多?”来引发学生的猜想。 设计意图:“疑是思之始,学之端”。这样设计,旨在把枯燥的数学知识贯穿于学生喜爱的故事情境中。引发学生的学习兴趣,激发他们学习的欲望。 (二)自主探究,寻找规律 活动一:动手实践,验证猜想 让学生动手折一折(将每张纸分别平均折成两份四份和八份)、涂一涂(用笔将其中的一份两份和四份涂上色)、比一比(比较涂色部分的大小),发现三只小猴分的饼是一样多的。同时得到三个相等的分数: = = 活动二:观察比较,发现规律 引导学生带着问题观察这三个分数,并在小组内展开讨论:这三个分数的分子和分母都不相同,他们的大小却相等,你们能找出它们的变化规律吗? 活动三:对比归纳,提示规律 1、运用课件引导学生分别从左往右看,从右往左看:分数的`分子和分母是怎样变化的? 2、小组合作,归纳出分数的基本性质。 3、自学教材,对比分析,并举例说明,着重理解为什么要“0除外”? 活动四:应用巩固,体会规律 我以学生为主角,把全班学生平均分成了两大组,请其中一组起立。站起来的学生人数占全班人数的几分之几?引导学生用不同的分数来表示。 设计意图:通过四组活动,使学生养成自主学习的习惯和分析问题的能力。在活动中,通过多种评价方式,及时肯定并促进学生的学习。 (三)多层练习,巩固深化 1、例2:让学生运用分数的基本性质把 和 化成分母是12而大小不变的分数。 2、明确《猴王分饼》的道理,并拓展延伸:如果小猴子要五块、六块、十块……又该怎么分呢? 3、考虑到学生素质的差异,我设计了四组分层闯关训练。 我的设计意图是:让学生运用所学的知识解决实际问题,实现预定的目标。还能使学有余力的学生有所提高,从而达到拔尖和减负的目的。 (四)课堂小结,加深理解 让学生畅谈收获,并用分数来表示本节课所体验到的收获与快乐。这样设计,不仅是对自己在课堂上知识获取的一个回顾,同时也评价了自己在课堂上的表现,对教师的教学行为与课堂的教学效果也给出了评价。 五、说板书设计: 板书设计突出了重点,有助于学生归纳、整理知识,形成知识网络。 六、说反思 反思本节课的教学,我认为教学设计体现了“趣”、“实”、“活”三个特点。故事引入,激发了学生的学习兴趣;通过折、涂、比等多种活动,为学生搭建了一个自主探究的活动平台;课上得富有实效,学生体验到了成功的乐趣。 各位领导、老师们,我的说课到此结束,谢谢大家! 《不等式的基本性质》它是北师大版八年级下册第一章第二节的内容。今天我将从教材分析,教学目标,教学重难点,教法学法,教学过程这五个方面谈谈我对这节课处理的一些不成熟的看法: 本节内容不等式,它是刻画现实世界中量与量之间关系的有效数学模型,在现实生活中有着广泛的应用,所以对不等式的学习有着重要的实际意义。同时,不等式的基本性质也为学生以后顺利学习解一元一次不等式和解一元一次不等式组的有关内容的理论基础,起到重要的奠基作用。 根据《新课程标准》的要求,教材的内容兼顾我校八年级学生的特点,我制定了如下教学目标: 知识与技能: 1. 感受生活中存在的不等关系,了解不等式的意义。 2. 掌握不等式的基本性质。 过程与方法:经历不等式的基本性质的探索过程,初步体会不等式与等式的异同。 情感态度与价值观:经历由具体实例建立不等式模型的过程,进一步符号感与数学化的能力。 教学重难点: 重点:不等式概念及其基本性质 难点:不等式基本性质3 教法与学法: 1. 教学理念: “ 人人学有用的数学” 2. 教学方法:观察法、引导发现法、讨论法. 3. 教学手段:多媒体应用教学 4. 学法指导:尝试,猜想,归纳,总结 根据《数学课程标准》的要求,教材和学生的特点,我制定了以下四个教学环节。 下面我将具体的教学过程阐述一下: 一、创设情境,导入新课 上课伊始,我将用一个公园买门票如何才划算的例子导入课题。 世纪公园的票价是:每人5元;一次购票满30张,每张可少收1元。某班有27名团员去世纪公园进行活动。当领队王小华准备好了零钱到售票处买27张票时,爱动脑筋的李敏同学喊住了王小华,提议买30张票。但有的`同学不明白,明明我们只有27个人,买30张票,岂不是“浪费”吗? (此处学生是很容易得出买30张门票需要4X30=120(元), 买27张门票需要5X27=135(元),由于120〈135,所以买30张门票比买27张还要划算。由此建立了一个数与数之间的不等关系式) 紧接着进一步提问:若人数是x时,又当如何买票划算? 二、探求新知,讲授新课 引例列出了数与数之间的不等关系和含有未知量120<5x的不等关系。那么在不等式概念提出之前,先让学生回顾等式的概念,“类比”等式的概念,尝试着去总结归纳出不等式的概念。使学生从一个低起点,通过获得成功的体验和克服困难的经历,增进应用数学的自信心,为下面的学习调动了积极。 接下来我用一组例题来巩固一下对不等式概念的认知,把表示不等量关系的常用关键词提出。 (1)a是负数; (2)a是非负数; (3) a与b的和小于5; (4) x与2的差大于-1; (5) x的4倍不大于7; (6) 的一半不小于3 关键词:非负数,非正数,不大于,不小于,不超过,至少 回到引入课题时的门票问题120<5x,我们希望知道X的取植范围,则须学习不等式的性质,通过性质的学习解决X的取植 难点突破:通过上面三组算式,学生已经尝试着归纳出不等式的三条基本性质了。不等式性质3是本节的难点。在不等式性质3用数探讨出以后,换一个角度让学生想一想,是否能在数轴上任取两个点,用相反数的相关知识挖掘一下,乘以或除以一个负数时,任意两个数比较是否性质3都成立。通过“数形结合”的思想,使数的取值从特殊化到一般化,从对具体数的感知完成到字母代替数的升华。让学生用实例对一些数学猜想作出检验,从而增加猜想的可信程度。同时,让学生尝试从不同角度寻求解决问题的方法并能有效地解决问题。 反馈练习:用一个小练习巩固三条性质。 如果a>b,那么 (1) a-3 b-3 (2) 2a 2b (3) -3a -3b 提出疑问,我们讨论性质2,3是好象遗忘了一个数0。 引出让学生归纳,等式与不等式的区别与联系 三、拓展训练 根据不等式基本性质,将下列不等式化为“<”或“>”的形式 (1)x-1<3 (2)6x<5x-2 (3)x/3<5 -4x="">3 再次回到开头的门票问题,让学生解出相应的x的取值范围 四、小结 1.新知识 一个数学概念;两种数学思想;三条基本性质 2.与旧知识的联系 等式性质与不等式性质的异同 五、作业的布置 以上是我对这节课的教学的看法,希望各位专家指正。谢谢! “让学生主动参与数学教学的全过程,真正成为学习的主人” 一、说教材。 1、教学内容: 《比例的意义和基本性质》是浙教版数学第十二册的内容。比例的知识在工农业生产和日常生活中有广泛的应用。这部分知识是在学习了比的知识和除法、分数等得基础上教学的,是本套教材教学内容的最后一个单元。而本节课内容主要属于概念教学,是为以后解比例,讲解正、反比例做准备的。学生学好这部分知识,不仅可以初步接触函数的思想,而且可以用来解决日常生活中一些具体的问题。 2、教学目标: 根据新课标要求和教材的特点,结合六年级学生的实际水平,确定以下教学目标: (1)通过计算、观察、比较,让学生概括、理解比例的意义和比例的基本性质。 (2)认识比例的各部分名称。 (3)学会用比例的意义或比例的基本性质,判断两个比能不能组成比例,并写出比例。 培养学生自主参与意识、自主探究的精神,培养学生初步的观察、分析、比较、判断、概括的能力,发展学生的思维。 3、教学重、难点: (1)教学重点:理解比例的意义和基本性质。 (2)教学难点:应用比例的意义和基本性质判断两个比能不能组成比例,并写出比例。 二、说教学设计。 课堂教学是学生学习数学知识的获得,能力发展的重要途径。基于此,我设计了如下的教学设计。 (一)复习导入。 先复习比的一些知识,什么叫比?什么叫比值?然后出示四个比让学求比值。揭示课题。 (二)教学新课。 分成两部分:第一部分,教学比例的意义;第二部分,教学比例的基本性质。 第一部分:先出示例1,让学生写出比,再计算它们的比值,然后观察、比较,发现比值相等,问:“那他们之间可以用什么符号连接呢?”是让学生深刻地了解到,只要两个比的比值相等,就可以说两个比相等。运用黑板上的几个比例式,告诉学生象这样的式子就叫做比例,给学生直观的印象。教学比例的意义后,及时组织练习。第一个是判断导入部分的四个比能否组成比例,并说明理由。第二个练习是,判断两个比是否能组成比例,在这个过程中,不仅运用了比例的意义,而且对比的性质也有一定的运用,以培养学生从多种角度解决问题的`能力。第三个练习是写出比值是0。4的两个比,并组成比例。三个练习,每一个都在逐步的延伸,意在达到熟练运用比例的意义解决问题的能力。 第二部分:在认识比例的各部分名称时,从比较比和比例有什么区别引出比例各部分的名称。 在揭示比例的基本性质时,我先让学生计算,然后观察发现规律,进一步验证规律,最后概括出比例的基本性质。接着就做些练习对所学的知识进行巩固及应用。特别强调了已知两个外项的积等于两个内项的积,利用这个式子改写成比例。 尊敬的各位老师: 大家好!我是泰山小学的高崇辉老师,我今天说课的题目是比的基本性质。 首先,我来说一说教材,我讲的是九年义务教育五年制小学数学第九册63页比的基本性质,教材是在学生已经掌握了比和分数、比和除法的关系以及分数的基本性质和除法的商不变的规律的基础上进行教学的,根据本节课知识在教材中的地位和作用以及学生的认识发展规律,我确定了本节课的教学目标: 1、通过自主探索、比较类推出比的基本性质,掌握化简比的方法,并会利用比的基本性质把一个比化成最简单的整数比。 2、培养学生的迁移类推、抽象概括能力。 3、引导学生揭示知识间的联系,向学生进行对立统一的辩证唯物主义教育。 并将理解并掌握比的基本性质,作为本节课的教学重点,应用比的基本性质把比化成最简单的整数比作为本节课的教学难点,在教学中我主要采用了探究学习的方法,教学媒体的使用:多媒体。 接着我来说一说本节课的教学过程和设计意图。 一、创造生活情境,激发学生学习兴趣 上课伊始我询问学生:ldquo;同学们喜欢喝蜂蜜水吗?rdquo;大部分同学会说愿意并会表示他们愿意喝更甜一些的。这时我会适时的向学生说明其实小明同学和大家一样也喜欢喝甜的蜂蜜水,这不小明的妈妈给小明准备了两杯蜂蜜水,但只能选择其中的一杯,哪杯甜呢?这下难坏了小明,聪明的同学们,你们愿意帮助他吗?电脑演示多媒体课件演示:第一杯360毫升的水,40毫升蜂蜜;第二杯180毫升的水,20毫升蜂蜜;同学们会兴致盎然,想尽各种办法帮助小明。有的同学会根据商不变的规律确定选哪杯都可以,因为360毫升的水是40毫升蜂蜜的9倍,180毫升的水是20毫升蜂蜜的9倍即360divide;40=180divide;20;有的同学会根据分数的基本性质确定选哪杯都可以,因为40毫升蜂蜜是360毫升水的九分之一,20毫升蜂蜜是180毫升水的九分之一即40/360=20/180,学生会想尽各种办法帮助小明解决这个问题。 这部分的设计意图是每一个学生都是热情的,都是乐于助人的,尤其是愿意帮助同学解决问题,因此一听说帮助同学,学生会产生极大的兴趣兴趣就是学生思维的原动力,只要有兴趣,就会产生创造性的源泉。另外同学的困难又是学生熟悉的生活情境,这有利于学生凭借生活经验主动探索,实现生活经验数学化,同时感受到ldquo;数学源于生活rdquo;。 二、引导学生发现规律,总结比的基本性质 1、 猜想规律 师:刚才同学们利用商不变的规律,分数的基本性质帮小明解决了问题。你们还记得它们的内容各是什么吗? 学生在师生互动,生生合作中说出商不变的规律,分数的基本性质的内容。屏幕出示文字内容。 我接着询问在分数的基本性质里,有哪些词很关键?在商不变的性质里,有哪些关键词?缺少他们行吗?为什么? 这回你们又会想到什么呢?(比的基本性质)那么,比的基本性质该是怎样的呢?本节课我们就一起来研究探讨它。 (板书课题:比的基本性质) 2、 实践探究 师:观察除法的基本性质(手指向商不变性质)与分数的基本性质,猜一猜,想一想,比的基本性质应该是怎样的呢?把你的想法在小组里说一说。 (1)小组讨论 (2)汇报结果:学生根据讨论结果发表意见。 (3)师生共同总结比的基本性质的内容。 (4)强调 学习了比的基本性质,你认为哪些词语是很重要,你想提醒同学们注意点什么?(同时、相同、0除外) 这一部分的设计意图是先通过学生回忆已学旧知,进而猜想比的基本性质,放飞了学生思维,让他们自主地依据已有知识经验,在观察、合作、猜想、交流中展开合理的想象与多角度思考,在有理有据表达、建立在对意义求真求准的对比中生成、完善了概念。也让学生体会到充分利用已有知识自学新知的学习方法,进一步弄清了比、除法、分数之间的联系与区别。然后通过引导学生用语言描述,共同完善比的基本性质,使学生在这一过程中,领悟了利用旧知学习新知的学习方法,沟通了知识间的联系,又培养了学生初步的类比推理能力。 三、 教学例1 1、说明。利用商不变性质,我们可以进行除法的简算;根据分数的基本性质,我们可以把分数约分成最简分数(板书:最简分数)。同样,应用比的基本性质,可以把比化成最简单的整数比。(板书:最简单的整数比) 2、讨论:怎么理解ldquo;最简单的整数比rdquo;这个概念?在小组里议一议。 3、指名汇报,形成共识: ㈠必须是一个比;㈡前项、后项必须是整数,不能是分数或小数;㈢前项与后项互质。 4、化简比 出示例1把下面各比化成最简单的'整数比。 (1)14:21 (2)1/6 :2/9 (3)1。25:2 学生板演,其余同学各抒己见说出不同方法。 师生共同总结整数比、分数比、小数比的化简方法。 这一部分的设计意图是ldquo;最简单的整数比rdquo;是本节课教学的难点。这里摒弃了由典型的个例入手解释ldquo;最简单整数比rdquo;的从特殊到一般的认识过程,采用让学生先讨论、后汇报对这个概念的理解认识的方法,让学生在独立思考、互动交流中自发地尝试利用已有的知识来解读新概念。同时,教师试图通过对较简单的整数比的化简,给学生一个运用性质解决具体问题的范例,为前后项是分数、小数的比的化简作了ldquo;跳一跳,可摘到果子rdquo;式的充要铺垫。学生在小组内部交流基础上进行组间的合作交流,让每个学生充分展示自己的思维方法及过程,相互讨论分析,提示知识规律和解决问题的方法,在合作中学生互相帮助,实现学生互补,增强合作意识,提高交往能力,使学生思维进入高潮。 四、实践运用 我设计了四部分练习题。 第一部分填空题包括3道题: 1、3:8=(3times;2):(8times;□) 2、15:10=(15divide;□):(10divide;5) 3、5:3=(5times;□):(3times;□) 这一部分的设计意图是学生加深对比的基本性质的理解,尤其是最后一题使学生在填空过程中体会到可以填ldquo;除0以外的所有相同的数rdquo;,培养学生的开放性思维。 第二部分根据比的基本性质判断下列各题 (1)4 :15=(4times;3):(15divide;3) ( ) (2)3/5:4/7=(3/5times;6):( 4/7times;6) ( ) (3)10 :15=(10divide;5):(15divide;3) ( ) (4) 7 :9 =(7+5):(9+5) ( ) 第三部分应用比的基本性质解决生活中的问题 师:上课前老 师统计了咱们班参加课外活动小组的人数,下面同学自己读题,然后试着解决这些问题,如果遇到困难同桌之间或小组之间可商量解决。 我们班共有学生48人,男生28人,女生20人: (1)请写出我们班男生和女生的人数比,并将这个比化成最简单的整数比。 (2)在课外小组活动中,我们班参加美术小组的人数占全班人数的1/4,参加科技小组的人数占全班人数的3/8,请写出参加美术小组和科技小组的人数比,并将这个比化成最简单的整数比。 (3)参加体育小组的人数是舞蹈小组的1。5倍,请写出参加体育小组和舞蹈小组的人数比,并将这个比化成最简单的整数比。 从学生熟悉的生活情境入手,把学生引入到现实情境中进行ldquo;再创造rdquo; 活动有利于让学生感受到数学就在身边,使原来枯燥乏味的数学题有了ldquo;应用味rdquo;,使学生对数学产生浓厚的兴趣和亲切感,会用数学眼光看问题,用数学头脑想问题,增强学生用数学知识解决实际问题的意识。从而培养学生的实践能力。另外尊重学生各性,让课堂成为学生发挥个性的天地,成为自我赏识的乐园。 第四部分思考题 1:8=(1+4):(8+□) 6:10=(6-3):(10divide;□) 让学生从实际出发,根据解决问题的条件作全面分析,周密思考,提高了学生全面分析及解决实际问题的能力,目的是培养学生辩证地看问题,培养学生创新精神。 五、评价体验 比的基本性质,是同学们通过自己主动探索,合作研究发现的,并能根据这一性质解决实际问题,回顾我们的学习过程,谁来谈谈你的收获和感受。 这一部分是对学生学习的一种激励评价,使学生体验到主动探索,获取知识的喜悦,激发了学习兴趣,树立学习自信心。 以上就是我对本节课的教学设计,如有不当之处敬请各们老师批评指正。 教材分析: 一、教材的地位及作用 “分式的基本性质(第1课时)”是人教版八年级数学下册第十五章第一节“分式” 的重点内容之一,是在小学学习了分数的基本性质的基础上进行的,是分式变形的依据,也是进一步学习分式的通分、约分及四则运算的基础,使学生掌握本节内容是学好本章及以后学习方程、函数等问题的关键。 二、教学重点、难点的分析 重点:理解并掌握分式的基本性质。 难点:灵活运用分式的基本性质,进行分式恒等变形、变号。 三、教材的处理 1)通过小组合作探究分式的基本性质,利用问题引导学生回忆分数的基本性质,再用类比的方法得出分式的基本性质。 2)引导学生用语言和式子表示分式的基本性质并通过针对练习使学生对其有更深的理解。 3)通过例题的讲解,让学生初步理解“性质”,再通过不同类型的练习,使其掌握“性质”的运用。 4)引导学生对本节课进行小结,使学生的知识结构更合理、更完善。 学情分析: 众所周知,关注学情是教学内在的需要。我们的学校刚刚建校2周年,学生的基础相对比较薄弱,在数学知识点运用方面问题较多。此外,学生的课外学习几乎无人督促,而学生又缺少自主学习的能力,所以班里的学生在学习成绩上都存在着严重的两级分化。同时体现出及格率低、优秀率低等问题。且升本教育模式在我校没有大面积推广,因此我们数学组在本学期内进行小专题实验:如何提高课堂实效性? 在教学中我们应该多注重基础知识的应用,让学生多练多想,同时注重激发学生的学习兴趣,从多方面吸引学生的注意力。 目标分析 1、知识与技能 (1)了解分式的基本性质 (2)灵活运用“性质”进行分式的变形。 2、数学思考 通过类比分数的基本性质,探索分式的基本性质,初步掌握类比的思想方法。 3、解决问题:通过探索分式的基本性质,积累数学活动经验。 4、情感态度价值观 通过研究解决问题的过程,培养学生合作交流意识与探究精神。 教法分析: 一、教学方法 基于本节课的特点: 课堂教学采用了“问题—观察—思考—提高”的步骤,使学生初步体验到数 学是一个充满着观察、思考、归纳、类比和猜测的探索过程。 根据教材分析和目标分析,确定本节课主要采用启发引导探索的教学方法。学生在教师营造的“可探索”的.环境里,积极参与,互相讨论,一步步地理解分式的基本性质,并通过应用此性质进行不同的练习,让学生得到更深刻的体会,实现教学目标。有方法就要有手段进行依托,我所采用的教学手段是:多媒体辅助教学通过课件演示,创设问题,让学讨论、交流、总结。教师耐心引导、分析、讲解和提问,并及时对学生的意见进行肯定与评议,从而突出教师是学生获取知识的启发者、引导者、帮助者和参与者的形象。 二、学法指导 现代新教育理念认为,学习数学不应只是单调刻板的简单模仿、机械背诵与操练,而应该采用有意义的,富有挑战性的学习内容来引起学生的兴趣。要达到学生主动学习的目的,本节课采用学生小组合作交流自主探索,观察发现,师生互动的学习方式。学生通过自主探究-自主总结-自主提高,突出学生是学习的主体,他们在感知知识的过程中,无疑提高了探索-发现-实践-总结的能力。同时强化了学生以旧知识类比得出新知识的能力。 教学过程: 一、小组合作,探索新知: 二、分式基本性质的应用 三、基础训练,巩固新知 四、知识拓展,深化提高 1、如果把分式abab,字母a,b的值分别扩大为原来的2倍,则分式的值为() A.扩大为原来的2倍 B.缩小到原来的 C.不变 D.缩小到原来 板书设计: 今天我说课的内容是《分数的基本性质》。下面我将从“说教学理念、说教材、说教法、说学法、说教学程序、说板书设计”六个方面来说课。 一、本课的教学理念有: 1、以学生发展为本,着力强化主体意识。 2、从学生已有的认知发展水平和知识经验出发,为学生提供充分从事数学活动的机会,变“学数学”为“做数学”。 3、致力于改变学生的学习方式,关注过程,让学生经历知识的形成过程,感受验证、转化等数学思想方法。 二、说教材 《分数的基本性质》一课是义务教材六年制数学第十册第四单元的一个内容。这部内容的学习是在学生学习了分数的意义、分数与除法的关系、商不变性质等知识的基础上进行教学的。它是进一步学习约分、通分的基础。 根据教材内容和学生的认识知规律,将本课的教学目标拟定如下: 1、知识与技能:理解和掌握分数的基本性质,知道分数基本性质与整数除法中商不变性质的关系。能运用分数的基本性质把一个分数化成分母相同而大小相等的分数;培养学生观察、比较及动手实践的能力,进一步发展学生的思维。 2、情感、态度:激发学生积极主动的情感状态,养成注意倾听的习惯。 本课的教学重点和难点:理解和掌握分数的基本性质,会运用分数的基本性质。 三、说教法 树立以“以学生发展为本”、“以学定教”、“教为学服务”的思想,因此在教学中,我采用引导自学、合作探索相结合法,让学会运用分数的基本性质把一个分数化成分母不同但大小相等的分数,有效地提高了教学效率。在知识的巩固阶段,我还采用组织练习法,当然以上这些教法并不是孤立存在的,本着“一法为主,多法为辅”的思想,我将多种教法进行优化组合,以达到促进学生学习方式的转变,实现教学目标的目的。 四、说学法 1、学生在运用分数的基本性质时,引导学生采用自主发现法、操作体验法,学生在折纸上画出相应的阴影部分后,必然会对那三个图形进行观察和比较,从中有所发现。之后老师通过启发学生运用分数的基本性质,证明那三个分数大小相等,让尝试中发现,在实践中体验。从而加深学生对分数基本性质的理解。 2、在学习例题的过程中教师先采用启发法,再采用自自学尝试法,独立自主地学习将分数化成分母不同但大小相同的分数,并尝试完成做一做,达到检验自学的目的。 五、说教学程序 一、设疑激趣,引入新课 教育学家布朗曾提出:“情境通过活动来合成知识,兴趣最好的老师”。 首先我通过多媒体为学生带来一个和尚分饼的故事。从前有座山,山里有座庙,庙里有个老和尚和三个小和尚。小和尚最喜欢吃老和尚烙的饼了。有一天,老和尚做了三块一样大小的饼,想给小和尚吃,还没给,小和尚就叫开了。矮和尚说:“我要一块!”高和尚说:“我要两块!”胖和尚说:“我不要多,只要四块!”老和尚听了二话没说,立刻把一块饼平均分成四块,取其中的一块给了矮和尚;把第二块饼平均分成八块,取其中的两块给了高和尚;把第三块饼平均分成十六块,取其中的四块给了胖和尚,一一满足了他们的要求。同学们,你知道哪个和尚吃的多吗? 这样通过故事激发学生的学习兴趣,为后面的学习做好了铺垫。 二、自主探索,学习新知 新课标强调,要让学生在实践活动中进行探索性的学习。根据这一理念,我设计了下面的活动。让学生在体验中学习,在学习中体验。 1、小组合作,让学生用一张纸代替饼,试着分分看。经历验证猜想——学生操作验证——集体汇报交流——展示成果四个过程。 2、引导提问:既然三个和尚分得的饼同样多,那么表示他们分得饼的三个分数什么关系呢?这三个分数什么变了,什么没变? 学生得出:这三个分数相等关系,分数的分子和分母变化了,但分数的大小不变。 3、引导学生从左到右观察等式,想一下,这三个分数的分子、分母怎样变化才保证了分数的大小不变的? 师:谁能用一句话把这个变化规律叙述出来呢? 生:从左往右看,分数的分子、分母同时扩大了,也就分子分母都乘了一个相同的数,但三个分数的大小没有变。 师:你们观察的真仔细!请大家给点掌声好吗?(出示课件)老师这样叙述的“分数的分子、分母都乘上同一个数,分数大小不变”。 4、让学生从右到左观察等式分子和分母又如何变化的呢?谁能用一句话把这个变化规律叙述出来?小组讨论后,同样的方法让学生小结规律,并请同学给予评价,让学生抒发自己的见解,体现课堂教学的民主化。然后教师在课件中补充“或者除以”四个字,小结分数的基本性质。 5、接着让学生四人小组一起做游戏,运用分数的基本性质,由一位同学说一个分数,然后其他同学依次说出相等的分数,不能重复,看看谁又快又准。 结束游戏,教师提问,现在我们知道分数的分子、分母都乘上或除以同一个数,分数大小不变。刚刚大家做游戏,有没有人使用了0呢?大家想一想0可以不可以呢?让学生回答:分数的分母不能为零。我在课件中填上“零除外”三个红色的字,以便引起学生的注意。 6、教师引导:“学了分数的基本性质到底有什么用呢?老师告诉你们,根据分数的基本性质,我们就能变魔术一样,把一个分数变成多个跟它大小一样,分子分母却不同的新分数。下面就让我们来变个魔术。”接着让学生练习课本例题2,两名学生上台演板,其他学生点评。学生自己小结方法。 教育家波利亚指出:学习任何新知的.最佳途径由学生自己去发现,因为这种发现理解最深,也最容易掌握内在规律和联系。教学中给学生提供自主探究、合作交流的天地,积极为学生创设主动学习的机会,提供尝试探索的空间,学生能主动从不同方面,不同角度思考问题,寻求解决途径。同时还培养学生的合作意识,使不同的想法得到交流,实现知识的学习、互补。 三、分层练习,巩固深化 只有通过相应的练习,才能更好地巩固新知,形成技能。在练习的安排上我注重层次性,渗透多样性,让学生理解用所学的知识可以解决不同类型的问题,进一步提高解题能力。 1、涂一涂练习14,第1、7题。 因为要给空格上色,所以答案并不唯一,通过这两题不仅能让学生回忆探究发现规律的过程,充分体现了“玩中学,学中玩”的新课程理念。 2、说一说完成练习14,第8题 我想通过这道题让学生进一步加深对分数基本性质的形成过程的理解,从而培养学生的语言表达能力。 3、想一想:第5、9、10题(选择一题做为作业) 在这我让同学们充分发挥想象,灵活运用分数的基本性质。为后面学习约分和通分的知识奠定基础。 四、畅谈收获,小结全课 让学生自己总结所学内容,畅谈收获和感受,培养学生的概括能力和语言表达能力。 整节课中,我力求做到始终引导学生主动观察、充分体验、动手实践、积极创新,努力做到既注重学生的独立思考,又注重合作交流,既重视知识与能力的共进,又关注情感和体验的提高,让学生全面、深刻地理解分数的基本性质。 教材分析: 比例的知识在工农业生产和日常生活中有着广泛的应用。《比例和比例的基本性质》是一节概念课,这部分知识是在学习了比的知识和除法、分数等的基础上进行教学的,而本节课内容是第二单元的第三课时,是为以后解比例,讲解正、反比例做准备的。学生学好这部分知识,是利用比例知识解决实际问题的先决条件。 教学目标: 1、体会国旗中隐含的数学规律,丰富学生关于国旗的知识,培养学生爱国旗,爱祖国的情感; 2、结合不同规格的国旗的典型事例,经历认识比例和比例的基本性质的过程; 3、认识比例,知道比例的内项和外项。理解并掌握比例的基本性质,会判断两个比是否成比例。 教学重点: 理解比例的意义,会运用比例的基本性质。 教学难点: 应用比例的意义或基本性质判断两个比能否组成比例,并能正确地组成比例。 教学理念: 1、让学生在具体情境中学习数学,理解数学概念; 2、让学生经历知识的发生、发展过程,自主构建数学知识; 3、注重解决实际问题,培养学生的应用意识。 一、创设情境,提出问题 三、巩固练习,加强应用 二、合作交流,自主建构 (重点) 教学设计三环节 二、合作交流,自主建构 活动一,教学比例的意义; 活动二,教学比例的基本性质; 兔博士网站中提供的关于国旗通用的五种规格: (1)长288cm,宽192cm; (2)长240cm,宽160cm; (3)长192cm,宽128cm; (4)长144cm,宽96cm; (5)长9 6cm,宽6 4cm; 请你任选两种规格的国旗,计算一下它们长和宽或宽和长的比值,小组说说你发现了什么? 初步感知比例的意义: 把比值相等的两个比写成一个等式,像这样 240:160=144:96 240/160=144/96 像这样,表示两个比相等的式子,叫做比例; 组成比例的四个数,叫做比例的项; 中间的两项叫做比例的内项; 两端的两项叫做比例的外项。 总结归纳比例的概念 探索比例的基本性质: 合作交流: 试着把上面比例中的两个外项,两个内项分别相乘,你发现了什么? 在比例里,两个内项的.积等于两个外项的积这叫做比例的基本性质。 240:160=144:96 160X144 240 X 96 内项积=外项积 师生共同总结: 基础练习一: 判断下面哪组中的两个比可以 组成比例。 (1)7:3和21:9 (2)0.5:24和1.5:3.6 (3)8:6和1/6:3/4 (4)3/10:1/4和6/25:1/5 基础练习二: 上午10时整,在空地上直立了6根不同长度的竹竿。测得这些竹竿的高度和影子的长度如下表: 竹竿高度与影长的比 3 2.5 2 1.5 1 0.5 影子长度(米) 6 5 4 3 2 1 竹竿高度(米) (1)写出竹竿高度以与影子长度的比,填在上表中。 (2)根据上面的结果写出三个比例。 拓展练习: 试着利用8的四个因数组成四个比例。 利用比例的基本性质填空: 3:2=( ): 6 ( ):12=2:6 课后反思,教学相长: 今后教学中,我还要注意以下几点: 一、是注意学生数学语言表达的完整性。 二、是对学生要及时给予评价,全面了解学生的数学学习过程。要关注他们在数学学习活动中表现出来的情感与态度,让学生建立数学学习的信心。 三、是灵活驾驭课堂的即时生成,要善于捕捉学生们的闪光点。 表示两个比相等的式子叫做比例。 240:160=144:96 160X144 240 X 96 比例的基本性质:内项积=外项积 板书: 比例和比例的基本性质 不妥之处,敬请各位领导、老师批评指正。 谢谢! 【比的基本性质说课稿】相关文章: 《比的基本性质》说课稿11-07 《分数的基本性质》说课稿06-04 分数的基本性质(说课稿)10-27 等式的基本性质说课稿07-08 分数的基本性质说课稿04-08 分数基本性质说课稿02-09 分式的基本性质说课稿12-12 《比例的基本性质》说课稿11-21 《分数的基本性质》说课稿07-04比的基本性质说课稿8
比的基本性质说课稿9
比的基本性质说课稿10
比的基本性质说课稿11
比的基本性质说课稿12
比的基本性质说课稿13
比的基本性质说课稿14
比的基本性质说课稿15