当前位置:贤学网>范文>说课稿> 《勾股定理》说课稿

《勾股定理》说课稿

时间:2024-11-02 07:15:28 说课稿 我要投稿

(必备)《勾股定理》说课稿15篇

  作为一名教学工作者,通常会被要求编写说课稿,借助说课稿可以有效提高教学效率。我们该怎么去写说课稿呢?下面是小编整理的《勾股定理》说课稿,仅供参考,希望能够帮助到大家。

(必备)《勾股定理》说课稿15篇

《勾股定理》说课稿1

尊敬的各位评委、老师:

  大家好!

  我说课的题目是华师版八年级上册第十四章第一节第一课时《勾股定理》。

  教材分析:

  如果说数学思想是解决数学问题的一首经典老歌,那么本节课蕴含的由特殊到一般的思想、数学建模的思想、转化的思想就是歌中最为活跃的音符!本节的内容是在学习了二次根式之后的教学,是在学生已经掌握了直角三角形的有关性质的基础上进行的后继学习,是中学数学几个重要定理之一。它揭示了直角三角形三条边之间的数量关系,是解直角三角形的主要根据之一,是解决四边形、圆等知识的灵魂,在实际生活中有着极其广泛的应用。

  勾股定理的发现、验证和应用蕴含着丰富的文化价值,在理论上占有重要地位,因此本节在教材中起着承前启后的桥梁作用。

  新课标下的数学教学不仅是知识的教学,更应注重能力的培养及情感的教育,因此,根据本节在教学中的地位和作用,结合初二学生不爱表现、好静不好动的特点,我确定本节教学目标如下:

  1、探索并利用拼图证明勾股定理。

  2、利用勾股定理解决简单的.数学问题。

  3、感受数学文化,体会解决问题方法的多样性和数形结合的思想。

  本着课标的要求,在吃透教材的基础上,我确定本节的教学重点、难点、关键如下:

  勾股定理的证明和简单应用是本节的重点,用拼图的方法证明勾股定理是难点,而解决难点的关键是充分利用图形面积的各种表示方法构造恒等式。

  为了讲清重点、突破难点、抓住关键,使学生达到预定目标,我对教法和学法分析如下:

  教法分析:

  新课程标准强调要从学生已有的经验出发,最大限度的激发学生学习积极性,新课程下的数学教师更应是学生学习活动的组织者、引导者、合作者,因此,鉴于教材的重点和初二学生的认知水平,我以学生充分预习为前提,以学生的动手操作、讲解为中心,让学生亲历亲为,体会做数学的过程,激发学生的探索兴趣,使课堂活跃起来,提高课堂效率。运用观察法、归纳法、引导发现法、讨论法等多种教学方法相结合的形式,让学生充分展示预习成果,体验成功的快乐,为终身学习和发展打下坚实的基础。为了增大课堂容量、给学生创设高效的数学课堂,给学生提供足够从事数学活动的时间,以导学案的形式、运用多媒体辅助教学。

  学法分析

  学法是学生再生知识的法宝,为了把学生学习过程当作认知事物的过程来解决,教学中我首先引导学生先动手操作,再合作交流,培养学生良好的学习品质和与人合作的能力;接下来,我让学生独立思考,点拨学生用特殊到一般的思想大胆尝试,水到渠成的突出勾股定理的探索这一重点,然后通过学生展示成果让学生抓住用不同的方式拼出图形,从而用不同的方式表示图形面积建立恒等式这一关健,以自己拼图操作、讲解展示预习成果突破定理证明这一难点,指导学生严谨、合理的书写格式,培养学生的逻辑思维能力和语言表达能力。

  为了充分调动学生的学习积极性,创设优化高效的数学课堂,我以导学案的方式循序见进的设计教学流程。

  以学生必读课本48—52页,选读课本55、56页的课前预习为前提,共分四个环节来进行教学

  1、勾股定理的探究:让学生历经量一量、算一算、想一想的由特殊到一般的数学思想引导好学生课前预习,再以检查预习成果的形式为新知的探究作好铺垫。

  2、勾股定理的证明:以学生拼图展示、讲解预习成果的形式完成对定理的证明。

  3、勾股定理的应用:以课堂练习、学生个性补充和老师适当的个性化追加的形式实现对定理的灵活应用。

  4、学后反思:以学生小结的形式引导学生从知识、情感两方面实现对本节内容的巩固与升华。

  说创新点:

  为了给学生营造一个和谐、民主、平等而高效的数学课堂,我以新课程标准的基本理念和总体目标为指导思想,面向全体学生,选择适当的起点和方法,充分发挥学生的主体地位与教师主导作用相统一的原则。教学中注重学生的动手操作能力的培养,化繁为简,化抽象为直观。例如我以展示预习成果为主线,以学生动手操作、讲解等直观方式代替老师画图、剪图、讲评费时费力的方式,既让每个学生都能积极的参与进来,培养学生的语言表达能力、逻辑推理能力,又达到了直观高效的效果。

  教学中我注重人文环境的创设,使数学课堂充满亲切、民主的气氛,例如整节课我以学生的操作、展示、讲解、个性补充为主,拉近了数学与学生的距离,激发了学生的学习兴趣;为了使不同的学生得到不同的发展,人人学有价值的数学,在教学中我创造性的使用教材,在不改变例题的本意为前提,创设身边暖房工程为情境,体现数学的生活化;以一题多变、中考题改编等形式进行练习题的层层深入,体现数学的变化美。

  以学生个性补充的形式促进课堂新的生成,最大限度的培养学生创新思维,使不同的人在数学上有不同的发展。本节课既做到了课程的开放,为充分发挥学生聪明智慧和创造性的思维提供了空间,又创设了具有独特教学风格的作文式数学课堂。而多媒体教学的引入更为学生提供了广阔的思考空间和时间;同时,我注重对学生进行数学文化的薰陶和数学思想的渗透,注重美育、德育与教育的三统一,如小结时由“勾股树”到“智慧树”的希望寄语。

《勾股定理》说课稿2

  大家好,今天我说课的题目是《勾股定理》。

  我将从教材分析、学情分析、教学过程等几个方面展开我的说课。

  一、说教材

  首先谈谈我对教材的理解。本节课是人教版初中数学八年级下册17。1《勾股定理》的第一课时。如标题所言,主要探究勾股定理。此前学生已经知道直角三角形的分类,也接触过用割补法求面积,这为本节课的学习打下良好基础。同时本节课为应用勾股定理解决问题和探究勾股定理的逆定理做好铺垫。

  二、说学情

  接下来谈谈学生的实际情况。本阶段的学生已经具备了一定的分析能力,也能做出逻辑推理,而且在生活中也为本节课积累了很多经验。所以,本节课的学习对学生而言是比较容易的。

  三、说教学目标

  根据以上分析,我制定了如下三维教学目标:

  (一)知识与技能

  掌握勾股定理,理解其推导方法与证明方法,能应用勾股定理求直角三角形的边长。

  (二)过程与方法

  经历勾股定理的探究与证明过程,渗透数形结合思想,发展空间观念。

  (三)情感、态度与价值观

  获得成功的体验,增强学习数学的兴趣与信心。

  四、说教学重难点

  在教学目标的实现过程中,教学重点是勾股定理,教学难点是勾股定理的探究与证明过程。

  五、说教学方法

  为了实现教学目标,突出重点、突破难点,我将采用讲授法、练习法、小组合作等教学方法。

  六、说教学过程

  下面重点谈谈我对教学过程的设计。

  (一)导入新课

  课堂伊始,我会简单讲述数学家毕达哥拉斯去朋友家作客时从地砖图案中发现数学定理的故事。由此提出本节课来看一看毕达哥拉斯发现了什么样的结论。引出课题。

  这样的设计可以让学生体会数学从生活中来,培养观察生活的习惯和热爱生活的乐观心态,并设置了悬念,能引起学生的好奇心和求知欲。

  (二)讲解新知

  引出课题后,我会承接情境,用大屏幕呈现地砖的图案,并加深图中一个等腰直角三角形周围三个正方形的颜色,方便学生观察。我会组织同桌合作,观察并讨论图中三个正方形的面积有什么关系,由此能得到等腰直角三角形的三边之间有什么关系。

  经过讨论,学生根据拼成每个正方形的三角形地砖数量可以得到两个小正方形的'面积之和等于大正方形的面积,而等腰直角三角形的三边恰好是每个正方形的边长,所以等腰直角三角形两条直角边的平方和等于斜边的平方。这是初步在等腰直角三角形中发现规律。

  (三)课堂练习

  课堂练习环节,我会组织学生求直角边长分别为3和4的直角三角形的斜边长。这一问题直接考查勾股定理,起到巩固知识的作用。

  然后在此基础上稍作修改,已知一个直角三角形的两边长为3和4,求第三边长度。问题的难度有所提升,在巩固知识的同时渗透分类讨论思想。

  (四)小结作业

  最后我会请学生自主总结并分享收获,在锻炼学生的总结与表达能力的同时获得教学反馈。

  课后作业设置为选择合适的生活情境,应用勾股定理解决问题。旨在帮助学生进一步巩固勾股定理,同时提升应用意识。

《勾股定理》说课稿3

尊敬的各位评委、老师,您们好。

  我是临沂市苍山县实验中学的**。今天我说课的内容是人教版《数学》八年级下册第十八章第一节《勾股定理》第一课时,我将从教材、教法与学法、教学过程、教学评价以及设计说明五个方面来阐述对本节课的理解与设计。

  一、教材分析:

  (一) 教材的地位与作用

  从知识结构上看,勾股定理揭示了直角三角形三条边之间的数量关系,为后续学习解直角三角形提供重要的理论依据,在现实生活中有着广泛的应用。

  从学生们认知结构上看,它把形的特征转化成数量关系,架起了几何与代数之间的桥梁;

  勾股定理又是对学生进行爱国主义教育的良好素材,因此具有相当重要的地位和作用。

  根据数学新课程标准以及八年级学生的认知水平我确定如下学习目标:知识技能、数学思考、问题解决、情感态度。其中【情感态度】方面,以我国数学文化为主线,激发学生们热爱祖国悠久文化的情感。

  (二)重点与难点

  为变被动接受为主动探究,我确定本节课的重点为:勾股定理的探索过程。限于八年级学生的思维水平,我将面积法(拼图法)发现勾股定理确定为本节课的难点,我将引导学生动手实验突出重点,合作交流突破难点。

  二、教学与学法分析

  教学方法 叶圣陶说过“教师之为教,不在全盘授予,而在相机诱导。”因此老师们利用几何直观提出问题,引导学生由浅入深的探索,设计实验让学生进行验证,感悟其中所蕴涵的思想方法。

  学法指导 为把学习的主动权还给学生,教师鼓励学生采用动手实践,自主探索、合作交流的学习方法,让学生亲自感知体验知识的形成过程。

  三、教学过程

  我国的数学文化源远流长、博大精深,为了使学生感受其传承的魅力,我将本节课设计为以下五个环节。

  第一步 情境导入 古韵今风

  给出《七巧八分图》中的一组图片,让学生利用两组七巧板进行合作拼图。(请看视频)让学生观察并思考三个正方形面积之间的关系?它们围成了什么三角形?反映在三边上,又蕴含着什么数学奥秘呢?寓教于乐,激发学生好奇、探究的欲望。

  第二步 追溯历史 解密真相

  勾股定理的探索过程是本节课的重点,依照数学知识的循序渐进、螺旋上升的原则,我设计如下三个活动。

  从上面低起点的问题入手,有利于学生参与探索。学生很容易发现,在等腰三角形中存在如下关系。巧妙的将面积之间的关系转化为边长之间的关系,体现了转化的思想。观察发现虽然直观,但面积计算更具说服力。将图形转化为边在格线上的图形,以便于计算图形面积,体现了数形结合的思想。学生会想到用“数格子”的方法,这种方法虽然简单易行,但对于下一步探索一般直角三角形并不适用,具有局限性。因此教师应引导学生利用“割”和“补”的方法求正方形C的'面积,为下一步探索复杂图形的面积做铺垫。

  突破等腰直角三角形的束缚,探索在一般情况下的直角三角形是否也存在这一结论呢?体现了“从特殊到一般”的认知规律。教师给出边长单位长度分别为3、4、5的直角三角形,避免了学生因作图不准确而产生的错误,也为下面 “勾三股四弦五”的提出埋下伏笔。有了上一环节的铺垫,有效地分散了难点。在求正方形C的面积时,学生将展示“割”的方法, “补”的方法,有的学生可能会发现平移的方法,旋转的方法,对于这两种新方法教师应给于表扬,肯定学生的研究成果,培养学生的类比、迁移以及探索问题的能力。

  使用几何画板动态演示,使几何与代数之间的关系可视化。当为直角三角形时,改变三边长度三边关系不变,当∠α为锐角或钝角时,三边关系就改变了,进而强调了命题成立的前提条件必须是直角三角形。加深学生对勾股定理理解的同时也拓展了学生的视野。

  以上三个环节层层深入步步引导,学生归纳得到命题1,从而培养学生的合情推理能力以及语言表达能力。

  感性认识未必是正确的,推理验证证实我们的猜想。

  第三步 推陈出新 借古鼎新

  教材中直接给出“赵爽弦图”的证法对学生的思维是一种禁锢,教师创新使用教材,利用拼图活动解放学生的大脑,让学生发挥自己的聪明才智证明勾股定理。这是教学的难点也是重点,教师应给学生充分的自主探索的时间与空间,让学生的思维在相互讨论中碰撞、在相互学习中完善。教师深入到学生中间,观察学生探究方法接受学生的质疑,对于不同的拼图方案给予肯定。从而体现出“学生是学习的主体,教师是组织者、引导者与合作者”这一教学理念。学生会发现两种证明方案。

  方案1为赵爽弦图,学生讲解论证过程,再现古代数学家的探索方法。方案2为学生自己探索的结果,论证之巧较方案1有异曲同工之妙。整个探索过程,让学生经历由表面到本质,由合情推理到演绎推理的发掘过程,体会数学的严谨性。对比“古”、“今”两种证法,让学生体会“吹尽黄沙始到金”的喜悦,感受到“青出于蓝而胜于蓝”的自豪感。板书勾股定理,进而给出字母表示,培养学生的符号意识。

  教师对“勾、股、弦”的含义以及古今中外对勾股定理的研究做一个介绍,使学生感受数学文化,培养民族自豪感和爱国主义精神。利用勾股树动态演示,让学生欣赏数学的精巧、优美。

  第四步 取其精华 古为今用

  我按照“理解—掌握—运用”的梯度设计了如下三组习题。

  (1)对应难点,巩固所学;(2)考查重点,深化新知;(3)解决问题,感受应用

  第五步 温故反思 任务后延

  在课堂接近尾声时,我鼓励学生从“四基”的要求对本节课进行小结。进而总结出一个定理、二个方案、三种思想、四种经验。

  然后布置作业,分层作业体现了教育面向全体学生的理念。

  四、教学评价

  在探究活动中,教师评价、学生自评与互评相结合,从而体现评价主体多元化和评价方式的多样化。

  五、设计说明

  本节课探究体验贯穿始终,展示交流贯穿始终,习惯养成贯穿始终,情感教育贯穿始终,文化育人贯穿始终。

  采用 “七巧板”代替教材中“毕达哥拉斯地板砖”利用我国传统文化引入课题,赵爽弦图证明定理,符合本节课以我国数学文化为主线这一设计理念,展现了我国古代数学璀璨的历史,激发学生再创数学辉煌的愿望。

  以上就是我对《勾股定理》这一课的设计说明,有不足之处请评委老师们指正,谢谢大家。

《勾股定理》说课稿4

  一、教材分析

  (一)教材地位与作用

  勾股定理它揭示的是直角三角形中三边的数量关系。它在数学的发展中起过重要的作用,在现时世界中也有着广泛的作用。学生通过对勾股定理的学习,可以在原有的基础上对直角三角形有进一步的认识和理解。

  (二)教学目标知识与能力:

  掌握勾股定理,并能运用勾股定理解决一些简单实际问题。过程与方法:经历探索及验证勾股定理的过程,了解利用拼图验证勾股定理的方法,发展学生的合情推理意识、主动探究的习惯,感受数形结合和从特殊到一般的思想。情感态度与价值观:激发爱国热情,体验自己努力得到结论的成就感,体验数学充满探索和创造,体验数学的美感,从而了解数学,喜欢数学。

  (三)教学重点:

  经历探索及验证勾股定理的过程,并能用它来解决一些简单的实际问题。

  教学难点:

  用面积法(拼图法)发现勾股定理。

  突出重点、突破难点的办法:

  发挥学生的主体作用,通过学生动手实验,让学生在实验中探索、在探索中领悟、在领悟中理解。

  二、教法与学法分析:

  学情分析:

  七年级学生已经具备一定的观察、归纳、猜想和推理的能力。他们在小学已学习了一些几何图形的面积计算方法(包括割补、拼接),但运用面积法和割补思想来解决问题的意识和能力还不够。另外,学生普遍学习积极性较高,课堂活动参与较主动,但合作交流的能力还有待加强。

  教法分析:

  结合七年级学生和本节教材的特点,在教学中采用“问题情境----建立模型----解释应用---拓展巩固”的模式,选择引导探索法。把教学过程转化为学生亲身观察,大胆猜想,自主探究,合作交流,归纳总结的过程。

  学法分析:在教师的组织引导下,学生采用自主探究合作交流的研讨式学习方式,使学生真正成为学习的主人。

  三、教学过程设计

  1、创设情境,提出问题

  2、实验操作,模型构建

  3、回归生活,应用新知

  4、知识拓展,巩固深化

  5、感悟收获,布置作业

  (一)创设情境提出问题

  (1)图片欣赏:勾股定理数形图1955年希腊发行。美丽的勾股树20xx年国际数学的一枚纪念邮票。

  设计意图:通过图形欣赏,感受数学美,感受勾股定理的文化价值。

  (2)某楼房三楼失火,消防队员赶来救火,了解到每层楼高3米,消防队员取来6.5米长的云梯,如果梯子的底部离墙基的距离是2.5米,请问消防队员能否进入三楼灭火?

  设计意图:以实际问题为切入点引入新课,反映了数学来源于实际生活,产生于人的需要,也体现了知识的发生过程,解决问题的过程也是一个“数学化”的过程,从而引出下面的环节。

  (二)实验操作模型构建

  1、等腰直角三角形(数格子)

  2、一般直角三角形(割补)

  问题一:对于等腰直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面积有何关系?设计意图:这样做利于学生参与探索,利于培养学生的.语言表达能力,体会数形结合的思想。

  问题二:对于一般的直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面积也有这个关系吗?(割补法是本节的难点,组织学生合作交流)

  设计意图:不仅有利于突破难点,而且为归纳结论打下基础,让学生的分析问题解决问题的能力在无形中得到提高。

  通过以上实验归纳总结勾股定理。

  设计意图:学生通过合作交流,归纳出勾股定理的雏形,培养学生抽象、概括的能力,同时发挥了学生的主体作用,体验了从特殊——一般的认知规律。

  四、回归生活应用新知

  让学生解决开头情景中的问题,前呼后应,增强学生学数学、用数学的意识,增加学以致用的乐趣和信心。

  五、知识拓展巩固深化

  基础题,情境题,探索题。

  设计意图:给出一组题目,分三个梯度,由浅入深层层练习,照顾学生的。个体差异,关注学生的个性发展。知识的运用得到升华。

  基础题:直角三角形的一直角边长为3,斜边为5,另一直角边长为X,你可以根据条件提出多少个数学问题?你能解决所提出的问题吗?

  设计意图:这道题立足于双基。通过学生自己创设情境,锻炼了发散思维。

  情境题:小明妈妈买了一部29英寸(74厘米)的电视机。小明量了电视机的屏幕后,发现屏幕只有58厘米长和46厘米宽,他觉得一定是售货员搞错了。你同意他的想法吗?

  设计意图:增加学生的生活常识,也体现了数学源于生活,并用于生活。

  探索题:做一个长,宽,高分别为50厘米,40厘米,30厘米的木箱,一根长为70厘米的木棒能否放入,为什么?试用今天学过的知识说明。

  设计意图:探索题的难度相对大了些,但教师利用教学模型和学生合作交流的方式,拓展学生的思维、发展空间想象能力。

  六、感悟收获布置作业:

  这节课你的收获是什么?

  作业:

  1、课本习题2、1

  2、搜集有关勾股定理证明的资料。

  板书设计探索勾股定理

  如果直角三角形两直角边分别为a,b,斜边为c,那么a2、b2、c2。

  设计说明:

  1、探索定理采用面积法,为学生创设一个和谐、宽松的情境,让学生体会数形结合及从特殊到一般的思想方法。

  2、让学生人人参与,注重对学生活动的评价,一是学生在活动中的投入程度;二是学生在活动中表现出来的思维水平、表达水平。

《勾股定理》说课稿5

  一、教材分析:

  (一)本节内容在全书和章节的地位

  这节课是九年制义务教育课程标准实验教科书(华东版),八年级第十九章第二节“勾股定理”第一课时。勾股定理是学生在已经掌握了直角三角形有关性质的基础上进行学习的,它是直角三角形的一条非常重要的性质,是几何中最重要的定理之一,它揭示了一个三角形三条边之间的数量关系,它可以解决直角三角形的主要依据之一,在实际生活中用途很大。教材在编写时注意培养学生的动手操作能力和观察分析问题的能力;通过实际分析,拼图等活动,使学生获得较为直观的印象;通过联系比较,理解勾股定理,以便于正确的进行运用。

  (二)三维教学目标:

  1、理解并掌握勾股定理的内容和证明,能够灵活运用勾股定理及其计算;

  2、通过观察分析,大胆猜想,并探索勾股定理,培养学生动手操作、合作交流、逻辑推理的能力。

  在探索勾股定理的过程中,让学生经历“观察—猜想—归纳—验证”的数学思想,并体会数形结合和从特殊到一般的思想方法。

  通过介绍中国古代勾股方面的成就,激发学生热爱祖国和热爱祖国悠久文化的思想感情,培养学生的民族自豪感和钻研精神。

  (三)教学重点、难点:

  勾股定理的证明与运用

  用面积法等方法证明勾股定理

  对于勾股定理的得出,首先需要学生通过动手操作,在观察的基础上,大胆猜想数学结论,而这需要学生具备一定的分析、归纳的思维方法和运用数学的思想意识,但学生在这一方面的可预见性和耐挫折能力并不是很成熟,从而形成困难。

  1、创设情景,激发思维:创设生动、启发性的问题情景,激发学生的问题冲突,让学生在感到“有趣”、“有意思”的状态下进入学习过程;

  2、自主探索,敢于猜想:充分让自己动手操作,大胆猜想数学问题的结论,老师是整个活动的组织者,更是一位参入者,学生之间相互交流、协作,从而形成生动的课堂环境;

  3、张扬个性,展示风采:实行“小组合作制”,各小组中自己推荐一人担任“发言人”,一人担任“书记员”,在讨论结束后,由小组的“发言人”汇报本小组的讨论结果,并可上台利用“多媒体视频展示台”展示本组的优秀作品,其他小组给予评价。这样既保证讨论的有效性,也调动了学生的学习积极性。

  二、教法与学法分析

  数学是一门培养人的思维,发展人的思维的重要学科,因此在教学中,不仅要使学生“知其然”,而且还要使学生“知其所以然”。针对初二年级学生的认知结构和心理特征,本节课可选择“引导探索法”,由浅到深,由特殊到一般的提出问题。引导学生自主探索,合作交流,这种教学理念紧随新课改理念,也反映了时代精神。基本的教学程序是“创设情景—动手操作—归纳验证—问题解决—课堂小结—布置作业”六个方面。

  新课标明确提出要培养“可持续发展的学生”,因此教师要有组织、有目的、有针对性的引导学生并参入到学习活动中,鼓励学生采用自主探索,合作交流的研讨式学习方式,培养学生“动手”、“动脑”、“动口”的'习惯与能力,使学生真正成为学习的主人。

  三、教学过程设计

  (一)创设情景

  多媒体课件演示FLASH小动画片:某楼房三楼失火,消防队员赶来救火,了解到每层楼高3米,消防队员取来6.5米长的云梯,如果梯子的底部离墙基的距离是2.5米,请问消防队员能否进入三楼灭火?

  问题的设计有一定的挑战性,目的是激发学生的探究欲望,老师要注意引导学生将实际问题转化为数学问题,也就是“已知一直角三角形的两边,求第三边?”的问题。学生会感到一些困难,从而老师指出学习了今天的这节课后,同学们就会有办法解决了。这种以实际问题作为切入点导入新课,不仅自然,而且也反映了“数学来源于生活”,学习数学是为更好“服务于生活”。

  (二)动手操作

  1、课件出示课本P99图19、2、1:

  观察图中用阴影画出的三个正方形,你从中能够得出什么结论?

  学生可能考虑到各种不同的思考方法,老师要给予肯定,并鼓励学生用语言进行描述,引导学生发现SP+SQ=SR(此时让小组“发言人”发言),从而让学生通过正方形的面积之间的关系发现:对于等腰直角三角形,其两直角边的平方和等于斜边的平方,即当∠C=90°,AC=BC时,则AC2+BC2=AB2。这样做有利于学生参与探索,感受数学学习的过程,也有利于培养学生的语言表达能力,体会数形结合的思想。

  2、紧接着让学生思考:上述是在等腰直角三角形中的情况,那么在一般情况下的直角三角形中,是否也存在这一结论呢?于是再利用多媒体投影出P100图19、2、2(一般直角三角形)。学生可以同样求出正方形P和Q的面积,只是求正方形R的面积有一些困难,这时可让学生在预先准备的方格纸上画出图形,再剪一剪、拼一拼,通过小组合作、交流后,学生就能够发现:对于一般的以整数为边长的直角三角形也存在两直角边的平方和等于斜边的平方。通过学生的动手操作、合作交流,来获取知识,这样设计有利于突破难点,也让学生体会到观察、猜想、归纳的数学思想及学习过程,提高学生的分析问题和解决问题的能力。

  3、再问:当边长不为整数的直角三角形是否也存在这一结论呢?投影例题:一个边长分别为1、5,3、6,3、9这种含有小数的直角三角形,让学生计算。这样设计的目的是让学生体会到“从特殊到一般”的情形,这样归纳的结论更具有一般性。

  (三)归纳验证

  通过动手操作、合作交流,探索边长为整数的等腰直角三角形到一般的直角三角形,再到边长为小数的直角三角形的两直角边与斜边的关系,让学生在整个学习过程中感受学数学的乐趣,使学生学会“文字语言”与“数学语言”这两种表达方式,各小组“发言人”的积极表现,整堂课充分发挥学生的主体作用,真正获取知识,解决问题。

  先后三次验证“勾股定理”这一结论,期间学生动手进行了画图、剪图、拼图,还有测量、计算等活动,使学生从中体会到数形结合和从特殊到一般的数学思想,而且这一过程也有利于培养学生严谨、科学的学习态度。

  (四)问题解决

  1、让学生解决开始上课前所提出的问题,前后呼应,让学生体会到成功的快乐。

  2、自学课本P101例1,然后完成P102练习。

  (五)课堂小结1、小组成员从内容、数学思想方法、获取知识的途径进行小结,后由“发言人”汇报,小组间要互相比一比,看看哪一个小组表现最佳。2、教师用多媒体介绍“勾股定理史话”

  ①《周髀算径》:西周的商高(公元一千多年前)发现了“勾三股四弦五”这一规律。

  ②康熙数学专著《勾股图解》有五种求解直角三角形的方法,积求勾股法是其独创。

  目的是对学生进行爱国主义教育,激励学生奋发向上。

  (六)布置作业:课本P104习题19、2中的第1、2、3题。目的一方面是巩固“勾股定理”,另一方面是让学生进一步体会定理与实际生活的联系。

  以上内容,我仅从“说教材”,“说学情”、“说教法”、“说学法”、“说教学过程”上来说明这堂课“教什么”和“怎么教”,也阐述了“为什么这样教”,希望各位专家领导对本次说课提出宝贵的意见,谢谢!

《勾股定理》说课稿6

  一、 说教材分析

  1. 教材的地位和作用

  华师大版八年级上直角三角形三边关系是学生在学习数的开方和整式的乘除后的一段内容,它是学生在已经掌握了直角三角形的有关性质的基础上进行学习的,它揭示了一个直角三角形三条边之间的数量关系,为后面解直角三角形的作好铺垫,它也是几何中最重要的定理,它将形和数密切联系起来,在数学的发展中起着重要的作用。

  因此他的教育教学价值就具体体现在如下三维目标中:

  知识与技能:

  1、经历勾股定理的探索过程,体会数形结合思想。

  2、理解直角三角形三边的关系,会应用勾股定理解决一些简单的.实际问题。

  过程与方法:

  1、经历观察—猜想—归纳—验证等一系列过程,体会数学定理发现的过程,由特殊到一般的解决问题的方法。

  2、在观察、猜想、归纳、验证等过程中培养学生的数学语言表达能力和初步的逻辑推理能力。

  情感、态度与价值观:

  1、通过对勾股定理历史的了解,感受数学文化,激发学习兴趣。

  2、在探究活动中,体验解决问题方法的多样性,培养学生的合作意识和然所精神。

  3、让学生通过动手实践,增强探究和创新意识,体验研究过程,学习研究方法,逐步养成一种积极的生动的,自助合作探究的学习方式。

  由于八年级的学生具有一定分析能力,但活动经验不足,所以

  本节课教学重点:勾股定理的探索过程,并掌握和运用它。

  教学难点:分割,补全法证面积相等,探索勾股定理。

  二、说教法学法分析:

  要上好一堂课,就是要把所确定的三维目标有机地溶入到教学过程中去,所以我采用了“引导探究式”的教学方法:

  先从学生熟知的生活实例出发,以生活实践为依托,将生活图形数学化,然后由特殊到一般地提出问题,引导学生在自主探究与合作交流中解决问题,同时也真正体现了数学课堂是学生自己的课堂。

  学法:我想通过“操作+思考”这样方式,有效地让学生在动手、动脑、自主探究与合作交流中来发现新知,同时让学生感悟到:学习任何知识的最好方法就是自己去探究。

  三、 说教学程序设计

  1、 故事引入新课,激起学生学习兴趣。

  牛顿,瓦特的故事,让学生科学家的伟大成就多数都是在看似平淡无奇的现象中发现和研究出来的;生活中处处有数学,我们应该学会观察、思考,将学习与生活紧密结合起来。毕达哥拉斯的发现引入新课。

  2、探索新知

  在这里我设计了四个内容:

  ①探索等腰直角三角形三边的关系

  ②边长为3、4、5为边长的直角三角形的三边关系

  ③学生画两直角边为2,6的直角三角形,探索三边的关系

  ④三边为a、b、c的直角三角形的三边的关系,(证明)

  ⑤勾股定理历史介绍,让学生体会勾股定理的文化价值。

  体现从特殊到一般的发现问题的过程。

  3、新知运用:

  ①举出勾股定理在生活中的运用。(老师讲解勾股定理在生活中的运用)

  ②在直角三角形中,已知∠ B=90° ,AB=6,BC=8,求AC.

  ③要做一个人字梯,要求人字梯的跨度为6米,高为4米,请问怎么做?

  ④如图,学校有一块长方形花铺,有极少数人为了避开拐角走“捷径”,在花铺内走出了一条“路”.他们仅仅少走了 步路(假设2步为1米),却踩伤了花草.

  4、小结本课:

  学完了这节课,你有什么收获?

  老师补充:科学家的伟大成就多数都是在看似平淡无奇的现象中发现和研究出来的;生活中处处有数学,我们应该学会观察、思考,将学习与生活紧密结合起来。数学来源于实践,而又应用于实践。解决一个问题的方法是多样性的,我们要多思考。 勾股定是数学史上的明珠,证明方法有很多种,我们将在下一节课学习它。

  反思:

  教学设计主要是体现从特殊到一般的知识形成过程,探索问题的设计上有点难,第二个问题应加个3,3为直角边的等腰直角三角形让学生分割或者补全,这样过度,降低3,4为直角边的探索探索;在2,6为直角边时,这个问题可以不用设计进去,就为后面的练习留足时间。探索时间较长,整个课程推行进度较慢,练习较少。

  对学生的启发不够,对学生的关注不够,学生对问题的思考不能及时想出来,没有及时很好的引导,启发,应让学生多一些思考的空间,并及时交给思考的方法。学生反应不是太好,能力差,也或许是因为问题设计的较难,没有很好的体现出探究。

  预期的目标没有很好的达成,学生虽然掌握了勾股定理,但探索热情没有点燃,思维能力,动手能力,探索精神没有很好的得到发展。

《勾股定理》说课稿7

尊敬的各位考官:

  大家好,我是X号考生,今天我说课的题目是《勾股定理的逆定理》。

  新课标指出:数学课程要面向全体学生,适应学生个性发展的需要,使得人人都能获得良好的数学教育,不同的人在数学上都能得到不同的发展。今天我将贯彻这一理念从教材分析、学情分析、教学过程等几个方面展开我的说课。

  一、说教材

  首先来谈一谈我对教材的理解。

  本节课选自人教版初中数学八年级下册第十七章第二节《勾股定理的逆定理》,它是在学生掌握勾股定理及一般三角形性质的基础上进行教学的'。应用前面学习的勾股定理及三角形全等证明逆定理是本节课的关键步骤,同时本节课又丰富了三角形的性质,是后面几何问题的基础理论性知识。

  二、说学情

  接下来谈谈学生的实际情况。本阶段的学生已经掌握了一定的基础知识,处于由几何内容的初级向高级行进的过程。他们的几何思维正在逐步形成和发展,对几何题目具有一定的分析、想象、概括能力,具有对未知事物的新鲜感和探求欲。同时也要注意到学生能力的不成熟,教学中鼓励与引导并重。

  三、说教学目标

  根据以上对教材的分析以及对学情的把握,我制定了如下教学目标:

  (一)知识与技能

  理解并掌握勾股定理的逆定理,会应用定理判定直角三角形;理解勾股定理与勾股定理逆定理的区别与联系;理解原命题和逆命题的概念,知道二者的关系及二者真假性的关系。

  (二)过程与方法

  经历得出猜想、推理证明的过程,提升自主探究、分析问题、解决问题的能力。

  (三)情感、态度与价值观

  体会事物之间的联系,感受几何的魅力。

  四、说教学重难点

  在教学目标的实现过程中,教学重点是勾股定理的逆定理及其证明,教学难点是勾股定理的逆定理的证明。

  五、说教法学法

  为了突破重点,解决难点,顺利达成教学目标,教学中我将主要采用小组讨论、自主探究的教学方法,辅以适量的教师讲解和引导,把课堂还给学生。

  六、说教学过程

  下面我将重点谈谈我对教学过程的设计。

  (一)导入新课

  课堂伊始,我采用复习旧知与创设情境相结合的导入方式。首先我会带领学生复习勾股定理并明确其题设和结论,为后面提出逆命题、逆定理做铺垫。接着提问学生如何画直角三角形,学生很容易想到用三角尺或量角器。此时我会要求学生不能用绳子以外的工具,借助学生的困惑,给出古埃及人利用等长的3、4、5个绳结间距画直角三角形的情境。以古埃及人所用方法中蕴含何道理为切入点引出课题。

  通过这样的导入方式,能够带领学生回顾上节课的内容,为本节课奠定好基础,同时用情境激发学生的好奇心和求知欲,更好地展开教学。

  (二)讲解新知

  接下来是最重要的新授环节。

  请学生思考3,4,5之间的关系,结合勾股定理的学习经验明确

  出示数据2.5cm,6cm,6.5cm,请学生计算验证数据满足上述平方和关系,并画出相应边长的三角形检验是否为直角三角形。

  学生活动:同桌两人一组,将三边换成其他满足上述平方和关系的数据,如4cm,7.5cm,8.5cm,画出相应边长的三角形检验是否为直角三角形。

  在得到肯定结论后,引导学生基于以上例子大胆猜想得出命题。

《勾股定理》说课稿8

尊敬的各位评委老师:

  我是xx,我抽到的课题是《勾股定理》,接下来,我将从教材、学情、教学目标等六个方面展开论述:

  一、说教材

  《勾股定理》位于初中数学人教版八年级下册第十七章,本节勾股定理承接之前学习的平面几何及三角形相关内容,为今后解析几何及微积分提供理论基础。勾股定理指出了直角三角形三边之间的数量关系,为数形结合搭建桥梁,是数学学习中最重要的定理之一。

  二、说学情

  八年级的学生具有一定的抽象逻辑思维,但是知识与逻辑不成体系,好在数形结合的思想在《数轴》这一章节有所体现,学生们并不陌生,《实数》与《二次根式》提供”数“的基础,《三角形》知识提供”形“。针对这种情况我会引导学生建立自己思考问题的逻辑思维能力,加强对数学知识的应用。

  三、说教学目标

  在充分研究理解教材和分析学情的基础之上,我确立了以下教学目标:

  1、初步认识勾股定理的内容及重要意义,并解决相关几何问题;

  2、利用图形拼接等方法,探索勾股定理推导过程,提高学生分析问题和解决问题的能力;

  3、通过对我国古代研究勾股定理成就的介绍,如赵爽弦图、《九章算术》等,培养学生的民族自豪感和自信心。以上教学目标是基于教材编排和学生具体情况而制定的,涉及对勾股定理的观察、计算、猜想、证明及简单应用过程,通过教师合理引导,启发学生自主探究勾股定理相关命题。

  四、说教学重难点

  本节课的重点是“如果直角三角形的两条直角边长分别为a,b,斜边长为c,那么a2+b2=c2”这一命题的推理及正确性证明。本节课的难点是由浅入深的证明过程,从正方形方格入手,到等腰直角三角形,最后到一般直角三角形,证明命题的一般正确性。

  五、说教法学法

  根据本节课的重难点及学生生理、心理发展所能够理解掌握知识的程度,我会利用毕达哥拉斯等故事及神奇的自然景观图案导入引起学生的学习兴趣。在知识传递中,我将采取观察法、测量法,小组讨论法等等,对推理证明过程中相对困难的部分,我会尝试从等腰直角三角形等简单的图形入手,引导学生对勾股定理这一命题的探究,学有余力的同学可以自主尝试多种证明方法,培养学生学习数学的兴趣和能力。

  六、说教学过程

  只有师生共同参与的课堂才是高效的课堂,教师的教和学生的.学充分融合,让学生对知识的掌握在教师的指导下深入浅出,因此我会涉及如下活动来提高课堂效率:首先,我会让学生提前准备好刻度尺、铅笔、网格纸等工具,测量、观察直角三角形三边之间的关系——两直角边的平方和等于斜边的平方。网格纸中构造的等腰直角三角形是直角三角形中最为特殊的一类,等腰三角形的特征在上册课本三角形的学习中着重学习过,因此可以使学生更加快速的进入勾股定理的世界。

  同时,借助之前的测量观察,提出反映这一数量关系的猜想在2500多年前毕达哥拉斯就曾发问过,引发学生的学习兴趣,后期一般直角三角形三边关系的证明过程中引出“赵爽弦图”,课后练习题提出《九中算数》池、葭问题等,通过学生自主推导,可增强学生的分析问题的能力。其次,在勾股定理的证明过程中证明方法有非常多,课本中介绍了赵爽弦图这一种证明方法,我会挑选多种方法,利用多种图形,让学生自主裁剪拼接,利用讨论法,小组成员可以发现多种证明方法,相互交流增进师生感情的同时培养学生自主发现探究问题的能力。

  在板书设计上,我会先将勾股定理写在黑板醒目的位置,后将教材中的证明方法及学生自主探究的证明方法逐一写、画在黑板上,此处可让学生上黑板写画,增加他们展示自我的机会,通过画图,多次证明命题,加深对知识的掌握并学会如何应用勾股定理解决问题。最后的作业设计,我会充分发挥学生的自主性,寻找利用勾股定理解决实际问题的例子,并自主完成勾股定理的应用,例如,电线杆、零部件、电梯箱等等。学有余力的同学可以自主设计勾股定理的应用实例,更好地发挥学生自主创新的能力。

  以上就是我的说课内容,谢谢各位评委老师的聆听!

《勾股定理》说课稿9

各位专家领导:

  上午好!今天我说课的课题是《勾股定理》。

  一、教材分析:

  (一)本节内容在全书和章节的地位。

  这节课是九年制义务教育课程标准实验教科书(华东版),八年级第十九章第二节“勾股定理”第一课时。勾股定理是学生在已经掌握了直角三角形有关性质的基础上进行学习的,它是直角三角形的一条非常重要的性质,是几何中最重要的定理之一,它揭示了一个三角形三条边之间的数量关系,它可以解决直角三角形的主要依据之一,在实际生活中用途很大。教材在编写时注意培养学生的动手操作能力和观察分析问题的能力;通过实际分析,拼图等活动,使学生获得较为直观的印象;通过联系比较,理解勾股定理,以便于正确的进行运用。

  (二)三维教学目标:

  1、知识与能力目标。

  (1)理解并掌握勾股定理的内容和证明,能够灵活运用勾股定理及其计算;

  (2)通过观察分析,大胆猜想,并探索勾股定理,培养学生动手操作、合作交流、逻辑推理的能力。

  2、过程与方法目标。

  在探索勾股定理的过程中,让学生经历“观察-猜想-归纳-验证”的数学思想,并体会数形结合和从特殊到一般的思想方法。

  3、情感态度与价值观。

  通过介绍中国古代勾股方面的成就,激发学生热爱祖国和热爱祖国悠久文化的思想感情,培养学生的民族自豪感和钻研精神。

  (三)教学重点、难点:

  1、教学重点:勾股定理的证明与运用

  2、教学难点:用面积法等方法证明勾股定理

  3、难点成因:

  对于勾股定理的得出,首先需要学生通过动手操作,在观察的基础上,大胆猜想数学结论,而这需要学生具备一定的分析、归纳的思维方法和运用数学的思想意识,但学生在这一方面的可预见性和耐挫折能力并不是很成熟,从而形成困难。

  4、突破措施:

  (1)创设情景,激发思维:

  创设生动、启发性的问题情景,激发学生的问题冲突,让学生在感到“有趣”、“有意思”的状态下进入学习过程;

  (2)自主探索,敢于猜想:

  充分让自己动手操作,大胆猜想数学问题的结论,老师是整个活动的组织者,更是一位参入者,学生之间相互交流、协作,从而形成生动的课堂环境;

  (3)张扬个性,展示风采:

  实行“小组合作制”,各小组中自己推荐一人担任“发言人”,一人担任“书记员”,在讨论结束后,由小组的“发言人”汇报本小组的讨论结果,并可上台利用“多媒体视频展示台”展示本组的.优秀作品,其他小组给予评价。这样既保证讨论的有效性,也调动了学生的学习积极性。

  二、教法与学法分析:

  1、教法分析:

  数学是一门培养人的思维,发展人的思维的重要学科,因此在教学中,不仅要使学生“知其然”,而且还要使学生“知其所以然”。针对初二年级学生的认知结构和心理特征,本节课可选择“引导探索法”,由浅到深,由特殊到一般的提出问题。引导学生自主探索,合作交流,这种教学理念紧随新课改理念,也反映了时代精神。基本的教学程序是“创设情景-动手操作-归纳验证-问题解决-课堂小结-布置作业”六个方面。

  2、学法分析:

  新课标明确提出要培养“可持续发展的学生”,因此教师要有组织、有目的、有针对性的引导学生并参入到学习活动中,鼓励学生采用自主探索,合作交流的研讨式学习方式,培养学生“动手”、“动脑”、“动口”的习惯与能力,使学生真正成为学习的主人。

  三、教学过程设计:

  (一)创设情景:

  多媒体课件演示FLASH小动画片:某楼房三楼失火,消防队员赶来救火,了解到每层楼高3米,消防队员取来6.5米长的云梯,如果梯子的底部离墙基的距离是2.5米,请问消防队员能否进入三楼灭火?

  问题的设计有一定的挑战性,目的是激发学生的探究欲望,老师要注意引导学生将实际问题转化为数学问题,也就是“已知一直角三角形的两边,求第三边?”的问题。学生会感到一些困难,从而老师指出学习了今天的这节课后,同学们就会有办法解决了。这种以实际问题作为切入点导入新课,不仅自然,而且也反映了“数学来源于生活”,学习数学是为更好“服务于生活”。

  (二)动手操作:

  1、课件出示课本P99图19.2.1:

  观察图中用阴影画出的三个正方形,你从中能够得出什么结论?

  学生可能考虑到各种不同的思考方法,老师要给予肯定,并鼓励学生用语言进行描述,引导学生发现SP+SQ=SR(此时让小组“发言人”发言),从而让学生通过正方形的面积之间的关系发现:对于等腰直角三角形,其两直角边的平方和等于斜边的平方,即当∠C=90°,AC=BC时,则 AC2+BC2=AB2。这样做有利于学生参与探索,感受数学学习的过程,也有利于培养学生的语言表达能力,体会数形结合的思想。

  2、紧接着让学生思考:

  上述是在等腰直角三角形中的情况,那么在一般情况下的直角三角形中,是否也存在这一结论呢?于是再利用多媒体投影出P100图 19.2.2(一般直角三角形)。学生可以同样求出正方形P和Q的面积,只是求正方形R的面积有一些困难,这时可让学生在预先准备的方格纸上画出图形,再剪一剪、拼一拼,通过小组合作、交流后,学生就能够发现:对于一般的以整数为边长的直角三角形也存在两直角边的平方和等于斜边的平方。通过学生的动手操作、合作交流,来获取知识,这样设计有利于突破难点,也让学生体会到观察、猜想、归纳的数学思想及学习过程,提高学生的分析问题和解决问题的能力。

  3、再问:

  当边长不为整数的直角三角形是否也存在这一结论呢?投影例题:一个边长分别为1.5,3.6,3.9这种含有小数的直角三角形,让学生计算。这样设计的目的是让学生体会到“从特殊到一般”的情形,这样归纳的结论更具有一般性。

  (三)归纳验证:

  1、归纳:

  通过动手操作、合作交流,探索边长为整数的等腰直角三角形到一般的直角三角形,再到边长为小数的直角三角形的两直角边与斜边的关系,让学生在整个学习过程中感受学数学的乐趣,,使学生学会“文字语言”与“数学语言”这两种表达方式,各小组“发言人”的积极表现,整堂课充分发挥学生的主体作用,真正获取知识,解决问题。

  2、验证:

  先后三次验证“勾股定理”这一结论,期间学生动手进行了画图、剪图、拼图,还有测量、计算等活动,使学生从中体会到数形结合和从特殊到一般的数学思想,而且这一过程也有利于培养学生严谨、科学的学习态度。

  (四)问题解决:

  1、让学生解决开始上课前所提出的问题,前后呼应,让学生体会到成功的快乐。

  2、自学课本P101例1,然后完成P102练习。

  (五)课堂小结:

  1、小组成员从内容、数学思想方法、获取知识的途径进行小结,后由“发言人”汇报,小组间要互相比一比,看看哪一个小组表现最佳。

  2、教师用多媒体介绍“勾股定理史话”。

  (1)《周髀算径》:西周的商高(公元一千多年前)发现了“勾三股四弦五”这一规律。

  (2)康熙数学专著《勾股图解》有五种求解直角三角形的方法,积求勾股法是其独创。

  3、目的:对学生进行爱国主义教育,激励学生奋发向上。

  (六)布置作业:

  课本P104习题19.2中的第1.2.3题。目的一方面是巩固“勾股定理”,另一方面是让学生进一步体会定理与实际生活的联系。

  以上内容,我仅从“说教材”,“说学情”、“说教法”、“说学法”、“说教学过程”上来说明这堂课“教什么”和“怎么教”,也阐述了“为什么这样教”,希望各位专家领导对本次说课提出宝贵的意见,谢谢!

《勾股定理》说课稿10

尊敬的各位领导、各位老师:

  大家好!

  我叫小红,是第十四中学的一名教师。我今天说课的题目《勾股定理的逆定理》,选自人教课标实验版教科书数学八年级下册第十八章第二节,本节课共分两个课时,我今天分析的是第一个课时,下面我将从教材、教法学法、教学过程、教学反思四个方面进行阐述。

  一、教材分析

  1、教材的地位和作用:

  在学习本节课之前学生已经学习了勾股定理,全等三角形的判定等相关知识,为本节课的学习打好了基础,学习好本节课不但可以巩固学生已有的知识,而且为后面利用勾股定理的逆定理判断一个三角形是否直角三角形等相关知识的学习做好了铺垫。

  2、教学目标

  教学目标支配着教学过程,教学目标的制定和落实是实施课堂教学的关键。考虑到学生已有的认知结构心理特征及本班学生的实际情况,我制定了如下教学目标

  知识与技能:掌握勾股定理的逆定理,会用勾股定理的逆定理判断一个三角形是否直角三角形。

  过程与方法:通过对勾股定理的逆定理的探索,经历知识的发生、发展与形成

  过程,体会数形结合和由特殊到一般的数学思想,进一步提高学生分析问题、解决问题的能力。

  情感、态度、价值观:在探究勾股定理的逆定理的活动中,渗透与他人交流、合作的意识和探究精神。

  3、重点难点

  本着课程标准,在吃透教材的基础上,我确立了如下的教学重、难点

  重点:理解并掌握勾股定理的逆定理,并会应用。

  难点:理解勾股定理的逆定理的推导。

  二、教法学法分析

  八年级学生的特点是思维比较活跃,喜欢发表自己的见解,善于进行小组合作学习,所以我将采用启发教学与诱导教学相结合的方法,老师为主导,学生为主体,充分调动学生的学习积极性,让学生动手操作,动脑思考,动口表达,积极参与到本节课的教学过程中来,在锻炼学生思考、观察、实践能力的同时,使其科学文化修养与思想道德修养进一步提升。

  教法学法分析完毕,我再来分析一下教学过程,这是我本次说课的重点。

  三、教学过程分析:

  (一)创设情景,引入新课

  1、展示图片:古埃及人制作直角的方法

  2、让学生试一试用一根绳子确定直角

  设计意图:通过古埃及人制作直角的方法,提出让学生动手操作,进而使学生产生好奇心:“这样就能确定直角吗”,激发学生的求知欲,点燃其学习的激情,充分调动学生的学习积极性 ,同时也使学生感受到几何来源于生活,服务于生活的道理,体会数学的价值。

  (二)动手检测,提出假设

  在本环节中通过情境中的问题,引导学生分别用(1)6cm,8cm,10cm (2)5 cm、12cm、13cm (3)3.5 cm 、12cm、 12.5 cm

  上面三组线段为边画出三角形,猜测验证出其形状。

  再引导启发诱导学生从上面的活动中归纳思考:如果一个三角形的三边a,b,c满足a2+b2=c2,那这个三角形是直角三角形吗?在整个过程的活动中,尽量给学生足够的时间和空间,以平等身份参与到学生活动中来,对其实践活动予以指导。让学生通过作图、测量等实践活动,给出合理的假设与猜测。整个环节通过设置的问题串,引导学生动手、动脑、动口相结合,激活学生的思维,培养学生严谨的科学态度,合理的`推测能力,严密的逻辑思维能力和灵活的动手实践能力。

  (三) 探索归纳,证明假设:

  勾股定理逆定理的证明与以往不同,需要构造直角三角形才能完成,如何构造直角三角形就成为解决问题的关键。如果直接将问题抛给学生证明,他们定会无从下手,所以为了解决这一问题,突破这个难点,我先

  1、 让学生画了一个三边长度为3cm,4cm,5cm的三角形和一个以3cm,4cm为直角边的直角三角形,剪下其中的直角三角形放在另一个三角形上看出现了什么情况?并请学生简单说明理由。通过操作验证两三角形全等,从而显示了符合条件的三角形是直角三角形,2、 然后在黑板上画一个三边长为a、b、c,且满足 a2+b2=c2的△ABC,与一个以a、b为直角边的直角三角形,让学生观察它们之间有什么联系呢?你们又是如何想的?试说明理由。通过推理证明得出勾股定理的逆定理。

  在这个过程中,首先让学生从特殊的实例中动手操作到证明,学生自然地联想到了全等三角形的判定,进而由特殊到一般发现三边长为a、b、c,且满足 a2+b2=c2的△ABC与以a、b为直角边的直角三角形的关系。

  设计意图:让学生从特殊的实例动手到证明,进而由特殊到一般,顺利地利用构建法证明了勾股定理的逆定理,整个过程自然、无神秘感,实现从直观印象向抽象思维的转化,同时学生亲身体会了“操作——观察——猜测——探索——论证”的过程,体验了“特殊到一般,个性到共性”的伟大数学思想在实际中的应用。

  这样学生不是被动接受勾股定理的逆定理,因而使学生感到自然、亲切,学生的学习兴趣和学习积极性有所提高。使学生确实在学习过程中享受到自我创造的快乐。

  (四)学以致用、巩固提升

  本着由浅入深的原则,安排了三个题。第一题比较简单,判断由a,b,c组成的三角形是不是直角三角形?(1)a=15 b=8 c=17 (2)a=13 b=15 c=14.让学生仿照课本上的例题,独立完成,教师提醒书写格式。并说明像15,8,17能够成为直角三角形的三条边长的正整数,我们称为勾股数。第二题我改变题的形式,把一些符合a+b=c的三角形放入网格中让学生运用勾股定理及其逆定理来说明理由。第三题是求一个不规则四边形的面积,让学生思考如何添加辅助线,把它分成一个直角三角形和一个非直角但能判定是直角的三角形,让学生运用勾股定理及其逆定理证明并求解。

  设计意图:采用启发教学与诱导教学方法相结合的方法分层练习,由浅入深地逐步提高学生解决实际问题的能力,达到巩固知识,学以致用的目的

  (五)回顾总结,强化认知

  课堂小结以填空体的形式检测、归纳总结

  设计意图:让学生以填空题的形式进行总结,不仅能够起到检测的目的,而且帮助学生理清知识脉络,起到重点强调,产生高度重视的效果。

  (六)作业布置

  教材33页练习

  设计意图:加强学生对勾股定理逆定理的理解,使学生的练习范围拓展到多个题型。

  教学反思:本节课以学生为主体、教师为主导,通过启发与诱导,使学生动手操作、动脑思考、动口表达,让学生在实践与探究中发挥自我,充分调动了学生的自主性与积极性,整个过程注重了学生课上知识的形成与巩固,以及学生各方面素质的培养。总之本节课的知识目标基本达成,能力目标基本实现,情感目标基本落实。

  以上是我对本节课的理解,还望各位老师指正。

《勾股定理》说课稿11

  一、教材分析

  (一)教材所处的地位

  这节课是九年制义务教育课程标准实验教科书八年级第十八章第一节勾股定理第一课时,勾股定理是几何中几个重要定理之一,它揭示的是直角三角形中三边的数量关系。它在数学的发展中起过重要的作用,在现时世界中也有着广泛的作用。学生通过对勾股定理的学习,可以在原有的基础上对直角三角形有进一步的认识和理解。

  (二)根据课程标准,本课的教学目标是:

  1、知识技能:了解勾股定理的文化背景,体验勾股定理的探索过程。

  2、数学思考:在勾股定理的探索过程中,发展合情推理能力,体会数形结合的思想。

  3、解决问题:①通过拼图活动,体验数学思维的.严谨性,发展形象思维。

  ②在探究过程中,学会与人合作并能与他人交流思维的过程和探究的结果。

  4、情感态度:①通过介绍勾股定理在中国古代的研究,激发学生热爱祖国,热爱祖国悠久文化的思想,激发学生发奋学习。

  ②在探究过程中,体验解决问题方法的多样性,培养学生的合作交流意识和探索精神。

  (三)本课的教学重点:探索和证明勾股定理

  本课的教学难点:用拼图的方法证明勾股定理

  二、教法与学法分析:

  教法分析:针对八年级学生的知识结构和心理特征,本节课可选择引导探索法,由浅入深,由特殊到一般地提出问题。引导学生自主探索,合作交流,这种教学理念反映了时代精神,有利于提高学生的思维能力,能有效地激发学生的思维积极性,基本教学流程是:提出问题实验操作归纳验证问题解决巩固练习课堂小结 布置作业七部分。

  学法分析:在教师的组织引导下,采用自主探索、合作交流的研讨式学习方式,让学生思考问题,获取知识,掌握方法,借此培养学生动手、动脑、动口的能力,使学生真正成为学习的主体。

  三、教学过程设计

  (一)提出问题:

  首先提出问题1:你知道下图所表示的意义吗?创设问题情境,2002年在北京召开了第24届国际数学家大会,它是最高水平的全球性数学科学学术会议,被誉为数学界的奥运会,这就是本届大会会徽的图案,你听说过勾股定理吗?通过提出问题,从而激发学生的求知欲。

  其次提出问题2:你知道勾三、股四、弦五的意义吗?此问题由故事引入,3000多年前有个叫商高的人对周公说,把一根直尺折成直角,两端连接得到一个直角三角形,如果勾是3,股是4,那么弦等于5。这样引起学生的学习兴趣,激发学生的求知欲。

《勾股定理》说课稿12

  今天我说课的课题是《勾股定理》。本课选自九年义务教育人教版八年级数学下册第十八章第一节的第一课时。

  一、教学背景分析

  1、教材分析

  本节课是学生在已经掌握了直角三角形有关性质的基础上进行学习的,通过20xx年国际数学家大会的会徽图案,引入勾股定理,进而探索直角三角形三边的数量关系,并应用它解决问题。学好本节不仅为下节勾股定理的逆定理打下良好基础,而且为今后学习解直角三角形奠定基础,在实际生活中用途很大。勾股定理是直角三角形的一条非常重要的性质,是几何中一个非常重要的定理,它揭示了直角三角形三边之间的数量关系,将数与形密切地联系起来,它有着丰富的历史背景,在理论上占有重要的地位。

  2、学情分析

  通过前面的学习,学生已具备一些平面几何的知识,能够进行一般的推理和论证,但如何通过拼图来证明勾股定理,学生对这种解决问题的途径还比较陌生,存在一定的难度,因此,我采用直观教具、多媒体等手段,让学生动手、动口、动脑,化难为易,深入浅出,让学生感受学习知识的乐趣。

  3、教学目标:

  根据八年级学生的认知水平,依据新课程标准和教学大纲的要求,我制定了如下的教学目标:

  知识与能力目标:了解勾股定理的发现过程,掌握勾股定理的内容,会用面积法证明勾股定理;培养在实际生活中发现问题总结规律的意识和能力.

  过程与方法目标:通过创设情境,导入新课,引导学生探索勾股定理,并应用它解决问题,运用了观察、演示、实验、操作等方法学习新知。

  情感态度价值观目标:感受数学文化,激发学生学习的热情,体验合作学习成功的喜悦,渗透数形结合的思想。

  4、教学重点、难点

  通过分析可见,勾股定理是平面几何的重要定理,有着承上启下的作用,在今后的生活实践中有着广泛应用。因此我确定本课的教学

  重难点为探索和证明勾股定理.

  二、教材处理

  根据学生情况,为有效培养学生能力,在教学过程中,以创设问题情境为先导,运用直观教具、多媒体等手段,激发学生学习兴趣,调动学生学习积极性,并开展以探究活动为主的教学模式,边设疑,边讲解,边操作,边讨论,启发学生提出问题,分析问题,进而解决问题,以达到突出重点,攻破难点的目的。

  三、教学策略

  1、教法

  “教必有法,而教无定法”,只有方法恰当,才会有效。根据本课内容特点和八年级学生思维活动特点,我采用了引导发现教学法,合作探究教学法,逐步渗透教学法和师生共研相结合的方法。

  2、学法

  “授人以鱼,不如授人以渔”,通过设计问题序列,引导学生主动探究新知,合作交流,体现学习的自主性,从不同层次发掘不同学生的不同能力,从而达到发展学生思维能力的目的,发掘学生的创新精神。

  3、教学模式

  根据新课标要求,要积极倡导自主、合作、探究的学习方式,我采用了创设情境——探究新知——反馈训练的教学模式,使学生获取知识,提高素质能力。

  四、教学过程

  (一)创设情境,引入新课

  利用多媒体课件,给学生出示20xx年国际数学家大会的场面,通过观察会徽图案,提出问题:你见过这个图案吗?你听说过勾股定理吗?从现实生活中提出赵爽弦图,激发学生学习的热情和求知欲,同时为探索勾股定理提供背景材料,进而引出课题。

  (二)引导学生,探究新知

  1、初步感知定理:这一环节选择教材的.图片,讲述毕达哥拉斯到朋友家做客时发现用砖铺成的地面,其中含有直角三角形三边的数量关系,创设感知情境,提出问题:现在也请你观察,看看有什么发现?教师配合演示,使问题更形象、具体。适当补充等腰直角三角形边长为1、2时,所形成的规律,使学生再次感知发现的规律。

  2、提出猜想:在活动1的基础上,学生已发现一些规律,进一步通过活动2进行看一看,想一想,做一做,让学生感受不只是等腰直角三角形才具有这样的性质,使学生由浅到深,由特殊到一般的提出问题,启发学生得出猜想,直角三角形的两直角边的平方和等于斜边的平方。

  3、证明猜想:是不是所有的直角三角形都有这样的特点呢?这就需要我们对一个一般的直角三角形进行证明.通过活动3,充分引导学生利用直观教具,进行拼图实验,在动手操作中放手让学生思考、讨论、合作、交流,探究解决问题的多种方法,鼓励创新,小组竞赛,引入竞争,教师参与讨论,与学生交流,获取信息,从而有针对性地引导学生进行证法的探究,使学生创造性地得出拼图的多种方法,并使学生在学习的过程中,感受到自我创造的快乐,从而分散了教学难点,发现了利用面积相等去证明勾股定理的方法。培养了学生的发散思维、一题多解和探究数学问题的能力。

  4、总结定理:让学生自己总结定理,不完善之处由教师补充。在前面探究活动的基础上,学生很容易得出直角三角形的三边数量关系即勾股定理,培养了学生的语言表达能力和归纳概括能力。

  (三)反馈训练,巩固新知

  学生对所学的知识是否掌握了,达到了什么程度?为了检测学生对本课目标的达成情况和加强对学生能力的培养,设计一组有坡度的练习题:A组动脑筋,想一想,是本节基础知识的理解和直接应用;B组求阴影部分的面积,建立了新旧知识的联系,培养学生综合运用知识的能力。C组议一议,是一道实际应用题型,给学生施展才智的机会,让学生独立思考后,讨论交流得出解决问题的方法,增强了数学来源于实践,反过来又作用于实践的应用意识,达到了学以致用的目的。

  (四)归纳小结,深化新知

  本节课你有哪些收获?你最感兴趣的地方是什么?你想进一步研究的的问题是什么?通过小结,使学生进一步明确掌握教学目标,使知识成为体系。

  (五)布置作业,拓展新知

  让学生收集有关勾股定理的证明方法,下节课展示、交流.使本节知识得到拓展、延伸,培养了学生能力和思维的深刻性,让学生感受数学深厚的文化底蕴。

  (六)板书设计,明确新知

  本节课的板书设计分为三块:一块是拼图方法,一块是勾股定理;一块是例题解析。它突出了重点,层次清楚,便于学生掌握,为获得知识服务。

《勾股定理》说课稿13

  各位老师、评委:大家好﹗

  今天我说课的题目是选自人教版八年级数学第十八章第一节的内容:勾股定理。

  我将从以下这几个方面进行本节课的阐述:教材分析、学情分析、教法、学法指导、教学过程设计以及教学反思。

  下面请大家和我共同走进教材。

  (一)教材分析

  ⒈教材的地位和作用

  《勾股定理》是人教版新课标八年级数学第十八章第一节第一课时内容,勾股定理是学生在已经掌握了直角三角形的有关性质的基础上进行学习的,是中学数学几个重要定理之一。它揭示了一个直角三角形三条边之间的数量关系,是解直角三角形的主要根据之一,在实际生活中用途很大。勾股定理的发现、验证和应用蕴含着丰富的文化价值,它在理论上占有重要地位,学好本节至关重要。

  ⒉教学目标

  根据新课程标准对学生知识、能力的要求,结合八年级学生实际水平、认知特点制定以下教学目标。

  知识与技能:了解勾股定理的文化背景,体验勾股定理的探索过程,能够灵活地运用勾股定理及其计算。

  过程与方法:让学生经历“观察-猜想-归纳-验证”的数学过程,并从中体会数形结合及从特殊到一般的数学思想。培养学生观察、比较、分析、推理的能力。

  情感态度与价值观:通过介绍我国古代在研究勾股定理方面取得的伟大成就,激发学生热爱祖国与热爱祖国悠久文化的思想感情,培养他们的民族自豪感,在探索问题的过程中,培养学生的合作交流意识和探索精神。

  3.重点和难点

  勾股定理的学习是建立在掌握一般三角形的性质、直角三角形以及三角形全等的基础上, 是直角三角形性质的拓展。本节课主要是对勾股定理的探索和勾股定理的证明。勾股定理的证明方法很多,本节课介绍的是等积法。通过本节课的教学,引领学生从不同的角度发现问题、用多样化策略解决问题,从而提高学生分析、解决问题的能力。

  因此本节课的重点:是勾股定理的发现、验证和应用。

  八年级学生已初步具备几何的观察能力和说理能力,也有了一定的空间想象和动手操作能力,但是他们的推理能力较弱、抽象思维能力不足。而本节课采用的是等积法证明。由于学生之前没有接触过等积法证明,他们对这种证明方法感到很陌生,尤其是觉得推理根据不明确,不象证明,没有教师的启发引领,学生不容易独立想到。

  因此本节课的难点:是用拼图方法、面积法证明勾股定理。

  (二)学情分析

  八年级学生已初步具有几何图形的观察,几何证明的理论思维能力。希望老师预设便于他们进行观察的几何环境,给他们发表自己见解和表现自己才华的机会,希望老师满足他们的创造愿望,让他们实际操作,使他们获得施展自己创造才能的机会。

  (三)说教学方法

  数学是一门培养人的思维,发展人的思维的重要学科,因此,在教学中,要展现获取知识和方法的思维过程, 针对八年级学生的知识结构和心理特征,本节课采取引导探索法,由浅入深,由特殊到一般地提出问题。以导为主,采用设疑的形式,让学生通过观察、分析、讨论、操作、归纳,理解定理,提高学生动手操作能力,以及分析问题和解决问题的能力。使学生得到获得新知的成功感受,从而激发学生钻研新知。并利用教具与多媒体进行教学。

  (四)说学习方法

  我们常说:“现代的文盲不是不识字的人, 而是没有掌握学习方法的人”, 因而在教学中要特别重视学法的指导, 我采用了如下的学法指导:

  在教师的组织引导下,采用自主探索、合作交流的研讨式学习方式,让学生思考问题,获取知识,掌握方法,借此培养学生动手、动脑、动口的能力,使学生真正成为学习的主体。

  (五)说教学过程

  根据学生的认知规律和学习心理,本节课分六个活动进行学习,为了扩大课堂容量节省时间提高课堂效率,拟采用多媒体教学。

  【活动1】:(多媒体展示)欣赏图片 了解历史

  第一幅图片配上文字说明。

  设计意图:这样的导入富有科学特色和浓郁的数学气息,激起学生强烈的兴趣和求知欲。

  第二幅图片为20xx年在我国北京召开的第24届国际数学家大会的场景,值得一提的是这次大会的会徽,为著名的赵爽弦图。

  设计意图:在学生欣赏赵爽弦图的过程中,进行爱国主义教育,可以让他们充分体会到我国古代在数学研究方面取得的伟大成就,从而激发学生的爱国热情和民族自豪感。

  第三幅图片为介绍古代勾和股。

  设计意图:简单介绍勾股定理的历史,引出勾股定理这一课题。

  学生,读一读和观察。

  【活动2】:探索勾股定理

  首先讲述毕达哥拉斯到朋友家做客的故事。(多媒体展示)

  然后提出两个问题,让学生沿着毕达哥拉斯的足迹去探寻勾股定理。

  {问题一}:在图中你能发现那些基本图形?

  {问题二}:与等腰直角三角形相邻的正方形面积之间有怎样的关系?

  (多媒体展示)探究一

  {问题三}:如图,每个小方格的面积为1个单位,你能写出正方形A、B、C的面积吗?

  {问题四}:由此你可以得出等腰直角三角形三边存在着一种怎样特殊的数量关系吗?

  学生在独立探究的基础上观察图片,计算面积,分组交流, 猜想和归纳。

  教师参与学生小组活动,指导,倾听学生交流。针对不同认识水平的学生,引导其用不同的方法得出大正方形的面积。在计算C的面积时可能有一定的难度,此时就要用到数学当中常见的割补法。因此需要教师的引导。

  设计意图:通过讲传说故事来激发学生学习兴趣,引导学生进入学习状态。学生会很积极的投入到探索这个问题的实践中。让学生并且尝试了从不同角度寻求解决问题的有效方法,并通过对方法的反思,获得解决问题的经验。

  “问题是思维的起点”,通过层层设问,引导学生发现新知。

  (多媒体展示)探究二

  {问题五}:等腰直角三角形三边具有这样的特殊关系,那么一般的`直角三角形呢?如图,每个小方格的面积为1个单位,你能写出正方形A、B、C的面积吗?

  将一般的直角三角形放入到网格中,并使得直角三角形的两条直角边为正整数,让学生去计算图1和图2中六个正方形的面积。关注学生能否用不同的方法得到大正方形的面积。

  学生计算,观察,猜想,语言表达猜想结论。

  教师参与学生小组活动,指导,倾听学生交流。针对不同认识水平的学生,引导其用不同的方法得出大正方形的面积。在计算C的面积时可能有一定的难度,此时又用到数学当中常见的割补法。因此需要教师的引导。

  设计意图:学生通过探究A、B、C三个正方形之间的面积关系,进而发现、猜想勾股定理,并用自己的语言表达出来。这样的设计渗透了从特殊到一般的数学思想。发挥学生的主体作用,培养学生类比迁移能力及探索问题的能力,使学生在相互欣赏,争辩,互助中得到提高。

  (多媒体展示)猜想:

  如果直角三角形两直角边分别为a、b,斜边为c,那么a2 b2=c2。

  即直角三角形两直角边的平方和等于斜边的平方。

  {问题六}:是不是所有的直角三角形都有这样的特点呢?

  【活动3】:证明勾股定理

  师:这就需要我们对一个一般的直角三角形进行证明。到目前为止,对这个命题的证明方法已有几百种之多。下面我们就来看一看我国数学家赵爽是怎样证明这个命题的。

  {问题七}:请同学们拿出课前准备好的四个全等的直角三角形,记三边分别为a,b,c,然后拼一拼、摆一摆,看看能否得到一个含有以斜边c为边长的正方形?

  学生独立思考的基础上以小组为单位,用准备好的四个全等直角三角形动手拼接。学生展示分割,拼接的过程。

  教师深入小组参与活动,倾听学生的交流,帮助指导学生完成拼图活动。并请小组代表到黑板演示拼图过程,鼓励学生敢于发表自己的见解。

  设计意图:通过这些实际操作,调动学生思维积极性,同时使学生对定理的理解更加深刻,学生能够进一步加深对数形结合的理解,拼图也会产生感性认识,也为论证勾股定理做好准备。

  {问题八}:它们的面积分别怎样表示?它们有什么关系呢?

  (多媒体展示)拼接图,面积计算

  学生观察,计算,小组讨论。

  在计算过程中,我重点在于引导学生分析图中面积之间的关系,得出结论:大正方形的面积= 4个全等的直角三角形的面积 小正方形的面积,从而运用等积法证明勾股定理。(这样,既突破了难点,让学生感受到用等积法证明勾股定理的奥妙。)

  设计意图:给学生充分的时间和空间参与到数学活动中来,并发挥他们的主观能动性,可以进一步提高学生的学习兴趣。利用分组讨论,加强学生的合作意识。

  师:我们现在通过推理证实了我们的猜想的正确性,经过证明被确认正确的命题叫做定理。猜想与直角三角形的边有关,我国把它称为勾股定理。“赵爽弦图”表现了我国古人对数学的钻研精神和聪明才智,它是我古代数学的骄傲。正因如此,这个图案被选为20xx年在北京召开的国际数学大会的会徽。

  【活动4】:应用勾股定理(多媒体展示)

  (小组选择,采用竞答方式)

  填空

  P的面积= ,

  AB= X=

  BC=

  BC=

  2、求下列图中表示边的未知数x、y、z的值。

  3求下列直角三角形中未知边的长:

  设计意图:首先是几道填空题和勾股定理的直接应用,这几道题既有类似又有不同,通过变式训练,强调应用勾股定理时应注意的问题。一是勾股定理要应用于直角三角形当中,二是要注意哪一条边为斜边。

  4、求出下列直角三角形中未知边的长度。

  设计意图:规范解题过程。

  5、小明的妈妈买了一部29英寸(74厘米)的电视机,小明量了电视机的屏幕后,发现屏幕只有58厘米长和46厘米宽,他觉得一定是售货员搞错了。你能解释这是为什么吗?(我们通过所说的29英寸或74厘米的电视机,是指其屏幕对角线的长度。)

  设计意图:这是一道和学生生活密切相关的应用题,让学生充分体会到数学是来源于生活,应用于生活。

  【活动5】:总结勾股定理(多媒体展示)

  1.这节课你的收获是什么?

  2.理解“勾股定理”应该注意什么问题?

  3.你觉得“勾股定理”有用吗?

  学生谈谈这节课的收获是什么,让学生畅所欲言。

  教师进行补充,总结,为下节课做好铺垫。

  设计意图:通过小结为学生创造交流的空间,调动学生的积极性,即引导学生培养学生从面积的角度理解勾股定理,又从能力,情感,态度等方面关注学生的整体感受。

  【活动6】:布置作业(多媒体展示)

  1.阅读教材第71页的阅读与思考-----《勾股定理的证明》。

  2.收集有关勾股定理的证明方法,下节展示交流。

  3.做一棵奇妙的勾股树(选做)

  设计的意图:给学生留有继续学习的空间和兴趣。

  (六)说教学反思

  本课意在创设愉悦和谐的乐学气氛,始终面向全体学生“以学生的发展为本” 的教育理念,课堂教学充分体现学生的主体性,给学生留下最大化的思维空间。注重数学思想方法的渗透,整个勾股定理的探索、发现、证明都着意渗透数形结合,又从一般到特殊,从特殊回归到一般的数学思想方法。重视数学史教育,激发学生的爱国情感。数学问题生活化,用数学知识解决生活中的实际问题,关键在于把生活问题转化为数学问题,让生活问题数学化,然后才能得以解决。在这个过程中,很多时候需要老师帮助学生去理解、转化,而更多时候需要学生自己去探索、尝试,并在失败中寻找成功的途径。教学中,如果能让学生自己反思答案与方法的合理性,那么效果会更好了。

  板书设计:

  18.1 勾股定理

  勾股定理:

  如果直角三角形两直角边分别为a,b,

  斜边为c,那么a2 b2=c2

《勾股定理》说课稿14

  一、说教材分析:

  (一)本节内容在全书和章节的地位

  这节课是九年制义务教育课程标准实验教科书(华东版),八年级第十九章第二节“勾股定理”第一课时。勾股定理是学生在已经掌握了直角三角形有关性质的基础上进行学习的,它是直角三角形的一条非常重要的性质,是几何中最重要的定理之一,它揭示了一个三角形三条边之间的数量关系,它可以解决直角三角形的主要依据之一,在实际生活中用途很大。教材在编写时注意培养学生的动手操作能力和观察分析问题的能力;通过实际分析,拼图等活动,使学生获得较为直观的印象;通过联系比较,理解勾股定理,以便于正确的进行运用。

  (二)三维教学目标:

  1.【知识与能力目标】

  ⒈理解并掌握勾股定理的内容和证明,能灵活运用勾股定理及其计算;

  ⒉通过观察分析,大胆猜想,并且探索勾股定理,培养学生动手操作、合作交流、逻辑推理的能力。

  2.【过程与方法目标】

  在探索勾股定理的过程中,让学生经历“观察-猜想-归纳-验证”的数学思想,并且体会数形结合和从特殊到一般的思想方法。

  3.【情感态度与价值观】通过介绍中国古代勾股方面的成就,激发学生热爱祖国和热爱祖国悠久文化的思想感情,培养学生的民族自豪感和钻研精神。

  (三)教学重点、难点:

  【教学重点】勾股定理的证明与运用

  【教学难点】用面积法等方法证明勾股定理

  【难点成因】对于勾股定理的得出,首先需要学生通过动手操作,在观察的基础上,大胆猜想数学结论,而这需要学生具备一定的分析、归纳的思维方法和运用数学的思想意识,但学生在这一方面的可预见性和耐挫折能力并不是很成熟,从而形成困难。

  【突破措施】:

  ⒈创设情景,激发思维:创设生动、启发性的问题情景,激发学生的问题冲突,让学生在感到“有趣”、“有意思”的状态下进入学习过程;

  ⒉自主探索,敢于猜想:充分让自己动手操作,大胆猜想数学问题的结论,老师是整个活动的组织者,更是一位参入者,学生之间相互交流、协作,从而形成生动的课堂环境;

  ⒊张扬个性,展示风采:实行“小组合作制”,各小组中自己推荐一人担任“发言人”,一人担任“书记员”,在讨论结束后,由小组的“发言人”汇报本小组的讨论结果,并可上台利用“多媒体视频展示台”展示本组的优秀作品,其他小组给予评价。这样既保证讨论的有效性,也调动了学生的学习积极性。

  二、说教法与学法分析

  【教法分析】数学是一门培养人的思维,发展人的思维的重要学科,因此在教学中,不仅要使学生“知其然”,而且还要使学生“知其所以然”。针对初二年级学生的认知结构和心理特征,本节课可选择“引导探索法”,由浅到深,由特殊到一般的提出问题。引导学生自主探索,合作交流,这种教学理念紧随新课改理念,也反映了时代精神。基本的教学程序是“创设情景-动手操作-归纳验证-问题解决-课堂小结-布置作业”六个方面。

  【学法分析】新课标明确提出要培养“可持续发展的学生”,因此教师要有组织、有目的、有针对性的引导学生并且参入到学习活动中,鼓励学生采用自主探索,合作交流的研讨式学习方式,培养学生“动手”、“动脑”、“动口”的习惯与能力,使得学生真正的成为学习的主人。

  三、说教学过程设计

  (一)创设情景

  多媒体课件演示FLASH小动画片:某楼房三楼失火,消防队员赶来救火,了解到每层楼高3米,消防队员取来6.5米长的云梯,如果梯子的底部离墙基的距离是2.5米,请问消防队员能否进入三楼灭火?

  问题的设计有一定的挑战性,目的是激发学生的探究欲望,老师要注意引导学生将实际问题转化为数学问题,也就是“已知一直角三角形的两边,求第三边?”的问题。学生会感到一些困难,从而老师指出学习了今天的这节课后,同学们就会有办法解决了。这种以实际问题作为切入点导入新课,不仅自然,而且也反映了“数学来源于生活”,学习数学是为更好“服务于生活”。

  (二)动手操作

  ⒈课件出示课本P99图19.2.1:

  观察图中用阴影画出的三个正方形,你从中能得出什么结论?

  学生可能会考虑到各种不同的'思考方法,老师要给予肯定,并且要鼓励学生用语言进行描述,引导学生发现SP+SQ=SR(此时让小组“发言人”发言),从而让学生通过正方形的面积之间的关系发现:对于等腰直角三角形,其两直角边的平方和等于斜边的平方,即当∠C=90°,AC=BC时,则 AC2+BC2=AB2。这样做有利于学生参与探索,感受数学学习的过程,也有利于培养学生的语言表达能力,体会数形结合的思想。

  ⒉紧接着让学生思考:上述是在等腰直角三角形中的情况,那么在一般情况下的直角三角形中,是否也存在这一结论呢?于是再利用多媒体投影出P100图 19.2.2(一般直角三角形)。学生可以同样求出正方形P和Q的面积,只是求正方形R的面积有一些困难,这时可让学生在预先准备的方格纸上画出图形,再剪一剪、拼一拼,通过小组合作、交流后,学生就能发现:对于一般的以整数为边长的直角三角形也存在两直角边的平方和等于斜边的平方。通过学生的动手操作、合作交流,来获取知识,这样设计有利于突破难点,也让学生体会到观察、猜想、归纳的数学思想及学习过程,提高学生的分析问题和解决问题的能力。

  ⒊再问:当边长不为整数的直角三角形是否也是存在这一结论呢?投影例题:一个边长分别为1.5,3.6,3.9这种含有小数的直角三角形,让学生计算。这样设计的目的是让学生体会到“从特殊到一般”的情形,这样归纳的结论更具有一般性。

  (三)归纳验证

  【归纳】通过动手操作、合作交流,探索边长为整数的等腰直角三角形到一般的直角三角形,再到边长为小数的直角三角形的两直角边与斜边的关系,让学生在整个学习过程中感受学数学的乐趣,,使学生学会“文字语言”与“数学语言”这两种表达方式,各小组“发言人”的积极表现,整一堂课充分发挥学生的主体作用,真正获取知识,解决问题。

  【验证】先后的三次验证“勾股定理”这一结论,期间学生动手进行了画图、剪图、拼图,还有测量、计算等活动,使学生从中体会到数形结合和从特殊到一般的数学思想,而且这一过程也是有利于培养学生严谨、科学的学习态度。

  (四)问题解决

  ⒈让学生解决开始上课前所提出的问题,前后呼应,让学生体会到成功的快乐。

  ⒉自学课本P101例1,然后完成P102练习。

  (五)课堂小结

  1.小组成员从内容、数学思想方法、获取知识的途径进行小结,后由“发言人”汇报,小组间要互相比一比,看看哪一个小组表现最佳。

  2.教师用多媒体介绍“勾股定理史话”

  ①《周髀算径》:西周的商高(公元一千多年前)发现了“勾三股四弦五”这一规律。

  ②康熙数学专著《勾股图解》有五种求解直角三角形的方法,积求勾股法是其独创。

  目的是对学生进行爱国主义教育,激励学生要奋发向上。

  (六)布置作业

  课本P104习题19.2中的第1.2.3题。目的一方面是巩固“勾股定理”,另一方面是让学生进一步体会定理与实际生活的联系。

《勾股定理》说课稿15

  一、 教材分析

  (一)教材地位

  这节课是九年制义务教育初级中学教材北师大版七年级第二章第一节《探索勾股定理》第一课时,勾股定理是几何中几个重要定理之一,它揭示的是直角三角形中三边的数量关系。它在数学的发展中起过重要的作用,在现时世界中也有着广泛的作用。学生通过对勾股定理的学习,可以在原有的基础上对直角三角形有进一步的认识和理解。

  (二)教学目标 知识与能力:掌握勾股定理,并能运用勾股定理解决一些简单实际问题。 过程与方法:经历探索及验证勾股定理的过程,了解利用拼图验证勾股定理的方法,发展学生的合情推理意识、主动探究的习惯,感受数形结合和从特殊到一般的思想。 情感态度与价值观: 激发学生爱国热情,让学生体验自己努力得到结论的成就感,体验数学充满探索和创造,体验数学的美感,从而了解数学,喜欢数学。

  (三)教学重点:经历探索及验证勾股定理的过程,并能用它来解决一些简单的实际问题。

  教学难点:用面积法(拼图法)发现勾股定理。

  突出重点、突破难点的办法:发挥学生的主体作用,通过学生动手实验,让学生在实验中探索、在探索中领悟、在领悟中理解。

  二、教法与学法分析:

  学情分析:七年级学生已经具备一定的观察、归纳、猜想和推理的能力.他们在小学已学习了一些几何图形的面积计算方法(包括割补、拼接),但运用面积法和割补思想来解决问题的意识和能力还不够。另外,学生普遍学习积极性较高,课堂活动参与较主动,但合作交流的能力还有待加强.

  教法分析:结合七年级学生和本节教材的特点,在教学中采用“问题情境————建立模型————解释应用———拓展巩固”的模式, 选择引导探索法。把教学过程转化为学生亲身观察,大胆猜想,自主探究,合作交流,归纳总结的过程。

  学法分析:在教师的组织引导下,学生采用自主探究合作交流的研讨式学习方式,使学生真正成为学习的主人。

  三、 教学过程设计

  1、创设情境,提出问题

  2、实验操作,模型构建

  3、回归生活,应用新知

  4、知识拓展,巩固深化

  5、感悟收获,布置作业

  (一)创设情境提出问题

  (1)图片欣赏 勾股定理数形图 1955年希腊发行 美丽的勾股树20xx年国际数学 的一枚纪念邮票 大会会标 设计意图:通过图形欣赏,感受数学美,感受勾股定理的文化价值。

  (2) 某楼房三楼失火,消防队员赶来救火,了解到每层楼高3米,消防队员取来6。5米长的云梯,如果梯子的底部离墙基的距离是2。5米,请问消防队员能否进入三楼灭火

  设计意图:以实际问题为切入点引入新课,反映了数学来源于实际生活,产生于人的需要,也体现了知识的发生过程,解决问题的过程也是一个“数学化”的过程,从而引出下面的环节。

  二、实验操作模型构建

  1、等腰直角三角形(数格子)

  2、一般直角三角形(割补)

  问题一:对于等腰直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的'面积有何关系

  设计意图:这样做利于学生参与探索,利于培养学生的语言表达能力,体会数形结合的思想。

  问题二:对于一般的直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面积也有这个关系吗 (割补法是本节的难点,组织学生合作交流)

  设计意图:不仅有利于突破难点,而且为归纳结论打下基础,让学生的分析问题解决问题的能力在无形中得到提高。

  通过以上实验归纳总结勾股定理。

  设计意图:学生通过合作交流,归纳出勾股定理的雏形,培养学生抽象、概括的能力,同时发挥了学生的主体作用,体验了从特殊—— 一般的认知规律。

  三。回归生活应用新知

  让学生解决开头情景中的问题,前呼后应,增强学生学数学、用数学的意识,增加学以致用的乐趣和信心。

  四、知识拓展巩固深化

  基础题,情境题,探索题。

  设计意图:给出一组题目,分三个梯度,由浅入深层层练习,照顾学生的个体差异,关注学生的个性发展。知识的运用得到升华。

  基础题: 直角三角形的一直角边长为3,斜边为5,另一直角边长为X,你可以根据条件提出多少个数学问题 你能解决所提出的问题吗

  设计意图:这道题立足于双基.通过学生自己创设情境 ,锻炼了发散思维. 情境题:小明妈妈买了一部29英寸(74厘米)的电视机。小明量了电视机的屏幕后,发现屏幕只有58厘米长和46厘米宽,他觉得一定是售货员搞错了。你同意他的想法吗

  设计意图:增加学生的生活常识,也体现了数学源于生活,并用于生活。 探索题: 做一个长,宽,高分别为50厘米,40厘米,30厘米的木箱,一根长为70厘米的木棒能否放入,为什么 试用今天学过的知识说明。

  设计意图:探索题的难度相对大了些,但教师利用教学模型和学生合作交流的方式,拓展学生的思维、发展空间想象能力。

  五、感悟收获布置作业: 这节课你的收获是什么

  作业:1、课本习题

  2、1 2、搜集有关勾股定理证明的资料。

  板书设计 探索勾股定理

  如果直角三角形两直角边分别为a,b,斜边为c,那么

  a2 b2 c2

  设计说明::1。探索定理采用面积法,为学生创设一个和谐、宽松的情境,让学生体会数形结合及从特殊到一般的思想方法.

  2、让学生人人参与,注重对学生活动的评价,一是学生在活动中的投入程度;二是学生在活动中表现出来的思维水平、表达水平。

【《勾股定理》说课稿】相关文章:

《勾股定理》说课稿04-28

《勾股定理》说课稿06-20

《勾股定理》优秀说课稿10-15

《勾股定理》说课稿最新08-13

勾股定理说课稿12篇02-16

勾股定理说课稿(15篇)11-12

《勾股定理的逆定理》说课稿12-01

勾股定理说课稿(精选15篇)12-13

勾股定理的逆定理说课稿05-15

初中数学《勾股定理》说课稿01-06

Copyright©2003-2024gushici.weiyujianbao.cn版权所有